Info

Ready For Takeoff - Turn Your Aviation Passion Into A Career

The Ready For Takeoff podcast will help you transform your aviation passion into an aviation career. Every week we bring you instruction and interviews with top aviators in their field who reveal their flight path to an exciting career in the skies.
RSS Feed
Ready For Takeoff - Turn Your Aviation Passion Into A Career
2018
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December


All Episodes
Archives
Now displaying: Page 1
Jun 18, 2018

Pam Mannon was transfixed by aviation ever since she was a child. When she told her parents she wanted to be a pilot, they were not too happy. In fact, since they were both college professors, they wanted Pam to avail herself of the free tuition at their school rather than attending Embry-Riddle Aeronautical University (ERAU). Pam created a win-win solution by attending their school until attaining all the credits that could be transferred to ERAU, then completed her education at ERAU. She later earned a dual Master's Degree from ERAU in Aerospace Operations and Human Factors.

Once she graduated with all the ratings, she worked at numerous aviation jobs, from managing an FBO front desk to flying as copilot in various jets. She eventually became a flight Instructor at FlightSafety International, and subsequently became a pilot and instructor for Continental Express.

For the past 15 years Pam has been a pilot for Honeywell Aerospace, and as the Lead Program Pilot she travels internationally to conduct training, and also flies operational missions.

Jun 14, 2018

Dynamic Hydroplaning: Water on the runways reduces the friction between the tires and the ground and can reduce braking effectiveness. The ability to brake can be completely lost when the tires are hydroplaning because a layer of water separates the tires from the runway surface. This is also true of braking effectiveness when runways are covered in ice. When the runway is wet, the pilot may be confronted with dynamic hydroplaning. Dynamic hydroplaning is a condition in which the aircraft tires ride on a thin sheet of water rather than on the runway’s surface. Because hydroplaning wheels are not touching the runway, braking and directional control are almost nil. To help minimize dynamic hydroplaning, some runways are grooved to help drain off water; most runways are not.

Tire pressure is a factor in dynamic hydroplaning. Using the simple formula of 8.6 times the square root of the tire pressure in p.s.i., a pilot can calculate the minimum speed, in knots, at which hydroplaning begins. In plain language, the minimum hydroplaning speed is determined by multiplying the square root of the main gear tire pressure in psi by nine. For example, if the main gear tire pressure is at 36 psi, the aircraft would begin hydroplaning at 54 knots. Landing at higher than recommended touchdown speeds exposes the aircraft to a greater potential for hydroplaning. And once hydroplaning starts, it can continue well below the minimum initial hydroplaning speed. On wet runways, directional control can be maximized by landing into the wind. Abrupt control inputs should be avoided. When the runway is wet, anticipate braking problems well before landing and be prepared for hydroplaning. Opt for a suitable runway most aligned with the wind. Mechanical braking may be ineffective, so aerodynamic braking should be used to its fullest advantage.

Viscous Hydroplaning: Slippery surfaces can cause tires to slip. One of the most common factors is rubber build-up on the runway, generally in the touchdown zone.

From Wikipedia: Viscous aquaplaning is due to the viscous properties of water. A thin film of fluid no more than 0.025 mm in depth is all that is needed. The tire cannot penetrate the fluid and the tire rolls on top of the film. This can occur at a much lower speed than dynamic aquaplane, but requires a smooth or smooth-acting surface such as asphalt or a touchdown area coated with the accumulated rubber of past landings. Such a surface can have the same friction coefficient as wet ice.

From Wikipedia:

Reverted Rubber Hydroplaning:

Reverted rubber (steam) aquaplaning occurs during heavy braking that results in a prolonged locked-wheel skid. Only a thin film of water on the runway is required to facilitate this type of aquaplaning. The tire skidding generates enough heat to change the water film into a cushion of steam which keeps the tire off the runway. A side effect of the heat is it causes the rubber in contact with the runway to revert to its original uncured state. Indications of an aircraft having experienced reverted rubber aquaplaning, are distinctive 'steam-cleaned' marks on the runway surface and a patch of reverted rubber on the tire.

Reverted rubber aquaplaning frequently follows an encounter with dynamic aquaplaning, during which time the pilot may have the brakes locked in an attempt to slow the aircraft. Eventually the aircraft slows enough to where the tires make contact with the runway surface and the aircraft begins to skid. The remedy for this type of aquaplane is for the pilot to release the brakes and allow the wheels to spin up and apply moderate braking. Reverted rubber aquaplaning is insidious in that the pilot may not know when it begins, and it can persist to very slow groundspeeds (20 knots or less).

Jun 11, 2018

Scott Weaver hails from a long line of pilots, starting with his grandfather, Leo Purington, who had a 4-digit pilot certificate number. Scott was immersed in aviation from a young age, but had initially aspired to a career as a professional baseball player.

Finally, the flying bug bit him, and he entered the Air Force and attended Undergraduate Pilot Training (UPT). Following UPT, he stayed in Air Training Command as a First Assignment Instructor Pilot (FAIP), instructing student pilots. Then it was time for him to get his fighter assignment, and he selected the F-16. Scott continued to fly the F-16 for the rest of his career, including his time in the DC Air Guard. He retired from the Guard as a Lieutenant Colonel.

After leaving active duty, Scott hired on with a major airline, and currently flies B777's on international routes.

Scott also wrote a book that chronicles the history of Thunderbird Field and his family's role in that history.

As part of his research, he met Jerry Yellin, the pilot who flew the last combat mission of World War II, who trained at Thunderbird Field.

Jun 6, 2018

From Flying Magazine: "In all, an estimated 13,000 Allied aircraft participated in the D-Day operations. It remains the single largest aerial operation in history. As it was an unprecedented action, it was a learning process, and there were fundamental misunderstandings about how aircraft would operate and interact. The operation was so critical and so complex that commanders made clear early on that they were willing to accept great losses in order to establish a beachhead."

From History on the Net: "However, success was not achieved without cost. During June 1944 the Eighth and Ninth Air Forces lost 904 aircraft: 284 in aerial combat, 400 to flak, and 220 operationally. The total included 320 Eighth Air Force B-17s and B-24s plus 44 B-26s and A-20s of the Ninth Air Force. Combined Eighth and Ninth fighter losses amounted to 540 Thunderbolts, Lightnings, and Mustangs."

From Smithsonian Air and Space Museum: "The planners feared friendly fire - anti-aircraft fire from Allied naval vessels and Allied troops - against their own air flotilla, and pilots mistakenly engaging in dogfights against their own comrades in arms. The existing system for identifying friendly aircraft, Identification Friend or Foe, would in all probability be overwhelmed by the sheer number of aircraft over the beaches. To avoid fratricidal incidents, the D-Day planners called for paint and brushes, and ordered that the aircraft of the Allied Expeditionary Air Force and supporting units be painted with alternating black and white stripes on wings and fuselage - 18 inches wide on single-engine aircraft, and 24 inches wide for twin-engined craft. They were called invasion stripes." D-Day stripes article https://airandspace.si.edu/stories/editorial/stripes-d-day

From Wikipedia: "CG-4As went into operation in July 1943 during the Allied invasion of Sicily. They were flown 450 miles across the Mediterranean from North Africa for the night-time assaults such as Operation Ladbroke. Inexperience and poor conditions contributed to the heavy losses. They participated in the American airborne landings in Normandy on 6 June 1944, and in other important airborne operations in Europe and in the China Burma India Theater. Although not the intention of the Army Air Forces, gliders were generally considered expendable by high-ranking European theater officers and combat personnel and were abandoned or destroyed after landing. While equipment and methods for extracting flyable gliders were developed and delivered to Europe, half of that equipment was rendered unavailable by certain higher-ranked officers. Despite this lack of support for the recovery system, several gliders were recovered from Normandy and even more from Operation Market Garden in the Netherlands and Wesel, Germany."

Jun 4, 2018

Kathleen (Kay) Hilbrandt started taking flying lessons in 1942, and in 1943 was accepted into the Womens Airforce Service Pilot (WASP) program. She attend Army Air Corps flight training (the same course as male pilots) in 1944, flying PT-17s, BT-13s and AT-6s. Then she served as a safety pilot in Eagle Pass, Texas, for aviation cadets performing instrument flights "under the hood".

After the war, when the WASP was disbanded, she joined the Ninety Nines and returned to New Jersey to work for Bendix Aviation Corporation. Following that, she was a flight instructor, training veterans who were using their GI Bill to obtain flight training.

In 1960 she flew in the All Women Transcontinental Air Race ("Powder Puff Derby") in a Cessna 172.

In 2010 the WASP were awarred the Congressional gold Medal for their service during WWII.

In 2013 Kay received the Wright Brothers Master Pilot Award. She continues to fly for pleasure.

May 31, 2018

As part of ATC modernization (NextGen), the FAA will be shutting down 308 VORs of the roughly 1000 in use right now in the United States. They will continue to operate VORs that provide coverage above 5000 feet over the entire continental United States (CONUS). This will provide Hazardous Inflight Weather Advisory Service (HIWAS) continuity. They will also retain VORs that are used with VOR, localizer and ILS approaches, and those in mountainous terrain and those used by the military. This will leave what is called the Minimum Operational Network (MON) for use in the event of GPS interruption.

Phase I: From 2016 to 2020, the FAA will decommission 74 VORs. Phase II: Between 2021 and 2025, the remaining 234 VORs will be decommissioned.

If a VOR is shut down, it SHOULD be shown with a cross-hatch on aeronautical charts.

It will continue to be REALLY IMPORTANT for pilots to always check NOTAMS that pertain to their route of flight!

The FAA plan is shown here.

General Aviation pilots should continue to hone their map-reading skills!

May 28, 2018

George E. Hardy in March 1943, at the age of 17, passed the written and physical examinations for the US Army Aviation Cadet program.  In July 1943 he was called to active duty and sent to Keesler Army Air Field, Biloxi, Mississippi, for basic training.  In September 1943 he was assigned to the 320th College Training Detachment at Tuskegee Institute in Alabama.  His group was scheduled to take college-level courses, at Tuskegee Institute, for a period of five months. This training was cut short in the beginning of December, as his group was transferred to Tuskegee Army Air Field (TAAF) for Aviation Cadet training, as part of Class 44-H.  In September 1944 he graduated as a single-engine pilot and was commissioned a Second Lieutenant in the U.S. Army. In November he was transferred to Walterboro AAF in South Carolina for combat flying training in P-47 aircraft.  This combat flying training was completed in early February 1945, and he was shipped overseas to Italy.  In Italy, he was assigned to the 99th Fighter Squadron, 332nd Fighter Group, where he flew 21 combat missions over Germany in P-51 aircraft.  Those missions were mainly high-altitude escort missions of heavy bombers, but many of the missions also included strafing of ground targets.  He returned from Italy in August 1945 and served at TAAF, until it closed in the summer of 1946.  In July 1946 he was transferred to Lockbourne AAF, Ohio where he was assigned to the 99th Fighter Squadron, flying P-47 aircraft. He was discharged from active duty in November 1946.

He attended New York University, School of Engineering, in the Bronx, from September 1947 to May 1948. He was recalled to active duty at Lockbourne Air Force Base (LAFB), Ohio, in June 1948.  He was assigned to the 301st Fighter Squadron, 332nd Fighter Group, flying P-47 aircraft.  In September 1948 he was reassigned as a student in the Airborne Electronics Maintenance Officers Course at Keesler AFB, Mississippi.  The course of study covered radar and long-range navigational equipment on fighter and bomber aircraft.  He graduated in August 1949.  In July 1949 the USAF instituted racial integration and personnel at Lockbourne AFB were reassigned to Air Force bases worldwide.  After graduation in August 1949, he was transferred to the 19th Bomb Group (B-29 Aircraft) on the island of Guam. He was further assigned to the 28th Bomb Squadron as a maintenance officer. His primary job was supervising about 25 airmen in maintenance of electronic equipment on the assigned aircraft.  As a pilot he was also required to fly and was assigned as a copilot on a B-29 aircrew.  The Korean War started 25 June 1950, and the 19th Bomb Group was transferred to Kadena Air Base, Okinawa. He flew 45 combat missions over Korea in the B-29 aircraft.

In March 1951 he returned to the states and was assigned to 6th Bomb Wing, at Walker AFB in New Mexico, as a maintenance officer. In June 1951 he was transferred to Lowry AFB, Denver, Colorado for seven months training as an Armament Systems maintenance officer, specifically on B-36 aircraft.  The B-36 aircraft was the largest aircraft in the Air Force, capable of intercontinental bombing missions without refueling.  The armament systems field included not only the electronic navigational and bombing systems but also included the retractable gun turrets and maintenance and loading of the bomb bays.  After the training at Lowry he was transferred back to Walker AFB and in December 1952 he was transferred to Carswell AFB, Ft Worth, Texas. He became part of the 42nd Bomb Wing (B-36 aircraft) and in March 1953 the wing was transferred to Limestone AFB, Maine. He served as a maintenance officer in the 42nd Armament and Electronics Maintenance Squadron (AEMS), until August 1955.

In August 1955 he transferred to the United States Air Force Institute of Technology at Wright Patterson AFB, Dayton Ohio.  He entered the undergraduate engineering program and in August 1957, received a Bachelor of Science Degree in Electrical Engineering.

In September 1957 he was assigned to the 3rd AEMS, 3rd Bomb Wing (B- 57, Canberra aircraft) at Johnson Air Base, Japan.  He was soon assigned as Maintenance Supervisor, a position he held for almost 3 years. The 3rd Bomb Wing  areas of operations were in Japan, Korea and Okinawa. He became jet-qualified as a pilot and in 1959 he received the aerial rating of Command Pilot. In June 1960 he was promoted to the grade of Major.

In November 1960 he transferred to Plattsburgh AFB, New York.  He was assigned as Squadron Commander of the 4108th AEMS, in the 4108th Air Refueling Wing (KC–97aircraft).  In the second half of 1962 his squadron held the 8th Air Force trophy for best AEMS squadron.  In November 1962 he was notified by the Air Force Institute of Technology of his eligibility to apply for a new graduate level systems engineering course specializing in reliability engineering.  He applied for the course and was reassigned, in January 1963, to the USAF Institute of Technology, at Wright Patterson AFB, Dayton Ohio.  In August 1964 he graduated with a Master of Science Degree in Systems Engineering - Reliability.

In September 1964 he was assigned to the Electronic Systems Division of Air Force Systems Command, at  Hanscom  AFB, Massachusetts.  In 1965 he received his promotion to the grade of Lt. Col.  In August 1966 he was assigned as Chief of Engineering and Program Manager, for the Development, Installation and Cutover of the 490L Overseas AUTOVON (AUTOmatic VOice Network) Communications Switches, part of the Department of Defense first worldwide direct dial telephone system.  The AUTOVON services within the continental United States was provided by the various telephone companies.  With completion of the overseas switches, the Department of Defense and other government agencies would have almost worldwide, direct dial telephone access.  The initial sites in Europe, Panama and the Pacific were successfully cut over in 1969.

At the end of 1969 he received notice of a flying assignment in Vietnam and was provided with refresher flight training as an AC-119K Gunship Aircraft Commander. He was assigned to the 18th Special Operations Squadron at Phan Rang Air Base in Vietnam in April 1970.  Although the squadron headquarters was at Phan Rang Air Base, the aircraft were located at two operating locations, one at Udorn Air Base, in Thailand, and the other at DaNang Air Base in Vietnam.  He was assigned as the Operating Location Commander at Udorn Air Base, Thailand through August 1970.  Missions were flown at night over northern Laos searching for truck traffic from North Vietnam.  In September 1970 he was transferred to DaNang Air Base in Vietnam as Operating Location Commander.  Missions were flown at night over central portions of Laos looking for truck traffic from North Vietnam.  He flew 70 combat missions before returning to the states in April 1971.

In May of 1971 he  was assigned to the Inspector General's office at Air Force Systems Command,  Andrews AFB in Maryland.  He served in the IG's office until November 1971 when he retired with the rank of Lieutenant Colonel.

His decorations include the Distinguished Flying Cross with Valor, the Air Medal with eleven (11) Oak Leaf Clusters, and the Commendation Medal with one Oak Leaf Cluster.

 

May 24, 2018

This past weekend I attend an outstanding workshop in Los Angles. Forty-eight veterans were selected to participate. The selection process was fairly intense - I had applied last year and was not selected, so I felt very honored to participate. I was there to see if I could develop a theatrical treatment of my Hamfist series.

The workshop was held at the Writers Guild Foundation. The Foundation describes itself as "a non-profit organization that serves as the premier resource for emerging writers and movie and TV lovers in Hollywood. boasting a vast toolbox for writers, the Foundation is unmatched in its mission to promote and preserve the craft, history and voices of screen storytelling through its Library, Archives, Programs and Events".

The Veterans Writing Project receives funding from donors and sponsors, including Final Draft, a software program that each participant received.

Attendees were divided into eight groups of six participants, all veterans. On the first day, in our individualized groups, we worked on Premise/Concept and Story/Structure. On the second day, we worked on Character and Dialog/Scene. We were guided by Mentors, all experienced, working, script-writers, and had an awesome two-hour presentation by Academy Award-nominated screenwriter Billy Ray (Hunger Games, Captain Phillips).

I really enjoyed the workshop, and realize I have a lot of work to do to turn my novel series into a movie. Fortunately, the Foundation will be holding our hands for the next year, with monthly workshops in L.A. and video conferencing for those of us who don't live nearby. Altogether, this was a fantastic experience, and I would encourage any veterans who have a story to tell to consider applying. You can get more information on the Project's website.

May 21, 2018

From Jacqui's website:

Jacquie traces her love of flying her to her earliest days, when, as a newborn, her first outing was to the Los Angeles County Airport Air Show. Her pilotfather’s interest in airplanes and flying inspired Jacquie to want to dream of flying. Jacquie spent many years dreaming of flying but was unable to do much about it until years later after working and saving her money. By the time she was 32 years old, she decided she was tired of hearing herself say “I wish I could fly and airplane”. She enrolled in ground school and the rest is history, as they say. She earned her Private Pilot certificate in 1987 and shortly thereafter was introduced to the world of aerobatics. Shortly thereafter a friend offered her a ride in a Pitts Special and she jumped at the chance to do a different kind of flying. With that first flight of loops, rolls, spins and a few other very scary maneuvers, she was instantly hooked on aerobatics. Once she discovered aerobatics, there was no question in her mind she was destined for aerobatic flying. It took 10 years longer to save enough money to take aerobatic lessons, but save she did and took her first “formal” aerobatic lesson in July 1997. She joined the International Aerobatic Club in August 2000 and for the next 4 years she flew aerobatic competition. She raced her biplane at the Reno Air Races from 2001 through 2004 to learn a whole new kind of flying.

Jacquie is now flying an Extra 300 monoplane. She made the switch from a biplane of many years to something new. Her beautiful red Extra is faster, more capable of gyroscopic maneuvers and has two seats! She can now give rides and share her love and passion of flying with others across the country. She holds a Commercial Certificate in land-based aircraft as well as a seaplane rating and holds a Level 1 ACE card which allows her to perform air shows down to the surface.

Jacquie B has earned her wings. She no longer qualifies as a newcomer flying for gas-and-a-hot-dog, as the saying goes. Her time has come. With over 3,200 flight hours and more than 1100 coast-to-coast air show performances behind her, Jacquie has proven that she has the talent, stamina, discipline and guts to reach beyond the limits placed on her by naysayers. In fact, she broke even more stringent cultural boundaries when she became the first female solo pilot to perform at the 2010 Al Ain Aerobatic Show in the United Arab Emirates. Jacquie is a powerful inspiration to the millions of fans who realize that they too can accomplish great things in life.

Jacquie spends a large part of her time as a role model by way of speaking to kids at schools, speaking to civic groups, private groups, and particularly groups of women and young girls. In March 2013, she organized a week-long program to offer airplane rides to young girls and women of all ages in a concerted effort to introduce them to the joys of flight and all things aviation. Jacquie flew 31 girls/women with the help of several other pilots during that week and made some life-long friends! Most had never been in a small airplane before. And the first two riders – Mom and her high school aged daughter, both said at the conclusion of their ride that they “needed to buy an airplane”!! Poor Dad didn’t know what to do! But the result is these girls/women got to experience something they always wanted to do and may someday go on to do great things in aviation. “We must give back” says Warda. “Our real job is to educate others of the vast opportunities in the world of aviation and share our passion and make sure others learn about and experience what we love so much. We must help others get started down the path of achieving their dreams, and by simply giving a ride in an airplane, it works! It’s a small gesture but makes a HUGE impact on the lives of many”.

 

May 17, 2018

In Episode 149 we discussed how to fly a 3-degree visual approach. In this episode we talk about how to fly a manual ILS approach, i.e., an approach flown without a flight director.

If you are planning to fly to an airport with an operable ILS, a little flight planning goes a long way. You can check weather forecasts for your destination and determine the probable runway that will be in use when you arrive, along with the forecast temperature and wind. You need this information to plan your approach.

To start, calculate the true airspeed of your aircraft at the anticipated landing weight when you arrive at your destination. Depending on your aircraft, this can vary considerably depending on weight. Now, consult your performance charts to determine your approach speed in indicated airspeed (IAS).

Use your IAS to calculate the true airspeed (TAS) for your approach. If you are operating into a sea level airport on a standard day, IAS an TAS are close to each other, but if you are flying your approach to a high-altitude airport there can be a considerable difference between IAS and TAS. The proper way to do this is to use your E6B computer, as explained in RFT 148. The fall-back method is to increase your IAS by 2 percent for each  1000 feet of altitude to determine TAS. For example, if you are flying 90 knots IAS at 5000 feet pressure altitude, your IAS would be 99 knots (90 knots plus 10 percent of 90).

You need this TAS to use the wind side of your E6B, as explained in RFT Episode 146. Perform a wind-side calculation to determine your groundspeed and wind correction angle for the approach.

Now, to stay on a nominal 3-degree ILS glide slope, descend at 1/2 your groundspeed times 10. If your groundspeed is 99 knots, descend at 500 feet per minute. When you intercept the localizer, apply the wind correction angle to the final approach course to get an initial approach heading.

ASSIGN yourself headings and descent rates, and you will find that it's relatively easy to fly an ILS with the needles centered, even without a flight director!

When you get to minimums and see the runway, don't change a thing!

May 14, 2018

Ageless Aviation Dreams Foundation is a manifestation of the passion of the Fisher family for seniors and for aviation. To understand this passion and the history of the Foundation, you need only look at the personal and professional legacy of the Fisher Family.

William L. and Dorothy Fisher started the family’s aviation heritage in 1940. Their love for the freedom of flight now transcends through four generations of pilots.  William purchased a Stearman for $1,200 but later sold the airplane.  They also had a very soft spot in their hearts for the aging and, in 1965, decided to open a senior health care facility in Roseburg, Oregon. Since then, aviation and senior care and service have become a lifetime priority for 3 generations of the Fisher family.

In the spring of 2011, William Fisher, son of William L. and Dorothy, and his son Darryl, decided to fulfill a life-long dream. They traveled throughout the United States, giving veterans and seniors in long-term care communities, an opportunity to fly in a newly restored Boeing Stearman aircraft.

Darryl was so moved by the positive emotions generated by the trip that he and his wife, Carol, decided to establish the non-profit organization, Ageless Aviation Dreams Foundation, as a tribute to seniors and United States veterans. Carol Fisher states, “The Fisher’s have always enjoyed sharing their love of aviation with anyone and everyone that has an interest in flying. Ageless Aviation Dreams Foundation is the Fisher family’s way of giving back to those that sacrificed so much to help build this great nation”.

May 10, 2018

FAR 91.25 briefly discusses the NASA Aviation Safety Reporting Program. In many respects, it's a "get out of jail" card to avoid enforcement action. The program is explained in Advisory Circular AC 00-46E.

Enforcement Action. When determining the type and extent of the enforcement action to take in a particular case, the FAA will consider the following factors:

(1) Nature of the violation;

(2) Whether the violation was inadvertent or deliberate;

(3) The certificate holder’s level of experience and responsibility;

(4) Attitude of the violator;

(5) The hazard to safety of others, which should have been foreseen; Par 7 Page 3 AC 00-46E 12/16/11

(6) Action taken by employer or other government authority;

(7) Length of time which has elapsed since the violation;

(8) The certificate holder’s use of the certificate;

(9) The need for special deterrent action in a particular regulatory area or segment of the aviation community; and

(10) Presence of any factors involving national interest, such as the use of aircraft for criminal purposes.

Enforcement Restrictions. The FAA considers the filing of a report with NASA concerning an incident or occurrence involving a violation of 49 U.S.C. subtitle VII or the 14 CFR to be indicative of a constructive attitude. Such an attitude will tend to prevent future violations. Accordingly, although a finding of violation may be made, neither a civil penalty nor certificate suspension will be imposed if: (1) The violation was inadvertent and not deliberate;

(2) The violation did not involve a criminal offense, accident, or action under 49 U.S.C. § 44709, which discloses a lack of qualification or competency, which is wholly excluded from this policy;

(3) The person has not been found in any prior FAA enforcement action to have committed a violation of 49 U.S.C. subtitle VII, or any regulation promulgated there for a period of 5 years prior to the date of occurrence; and

(4) The person proves that, within 10 days after the violation, or date when the person became aware or should have been aware of the violation, he or she completed and delivered or mailed a written report of the incident or occurrence to NASA.

 

May 7, 2018

Christina Olds is the daughter of Robin Olds, an American fighter pilot and general officer in the U.S. Air Force. He was a "triple ace", with a combined total of 16 victories in World War II and the Vietnam War. He retired in 1973 as a brigadier general. After her father's death, Christina spent years combing through her father's notes, diaries and unfinished memoir to complete a captivating, intimate memoir of the consummate fighter pilot.

The son of Army Air Forces Major General Robert Olds, educated at West Point, and the product of an upbringing in the early years of the U.S. Army Air Corps, Olds epitomized the youthful World War II fighter pilot. He remained in the service as it became the United States Air Force, despite often being at odds with its leadership, and was one of its pioneer jet pilots. Rising to the command of two fighter wings, Olds is regarded among aviation historians, and his peers, as the best wing commander of the Vietnam War, for both his air-fighting skills, and his reputation as a combat leader.[4]

Olds was promoted to brigadier general after returning from Vietnam and became Commandant of Cadets at the United States Air Force Academy. 

Olds had a highly publicized career and life, including marriage to Hollywood actress Ella Raines. As a young man he was also recognized for his athletic prowess in both high school and college, being named an All-American as a lineman in college football. Olds expressed his philosophy regarding fighter pilots in the quote: "There are pilots and there are pilots; with the good ones, it is inborn. You can't teach it. If you are a fighter pilot, you have to be willing to take risks."

May 4, 2018

FOQA is a voluntary safety program that is designed to make commercial aviation safer by allowing commercial airlines and pilots to share de-identified aggregate information with the FAA so that the FAA can monitor national trends in aircraft operations and target its resources to address operational risk issues (e.g., flight operations, air traffic control (ATC), airports). The fundamental objective of this new FAA/pilot/carrier partnership is to allow all three parties to identify and reduce or eliminate safety risks, as well as minimize deviations from the regulations. To achieve this objective and obtain valuable safety information, the airlines, pilots, and the FAA are voluntarily agreeing to participate in this program so that all three organizations can achieve a mutual goal of making air travel safer.

A cornerstone of this new program is the understanding that aggregate data that is provided to the FAA will be kept confidential and the identity of reporting pilots or airlines will remain anonymous as allowed by law. Information submitted to the FAA pursuant to this program will be protected as “voluntarily submitted safety related data” under Title 14 of the Code of Federal Regulations (14 CFR) part 193.

Apr 30, 2018

Emilio Corsetti took a flight in an airplane as a teenager, and he was hooked! He started taking flying lessons, and received his Private Pilot license before his driver's license. He paid his dues at numerous flying jobs after becoming a CFI, and flew night check deliveries for four years before getting hired as an airline pilot.

During his journey, Emilio was unemployed a total of ten years as he moved from one company to the next, experiencing terminations and furloughs numerous times. His major airline flying, at TWA, started out in the Second Officer (flight engineer) position on the 727.

While a new-hire at TWA, he became fascinated by the story of the first turbojet airliner to ditch in open water. During his furlough he researched the event, interviewing crew members, survivors, rescuers, and air traffic controllers, as well as researching NTSB records.

The resulting book, 35 Miles From Shore, was an immediate success.

His next book, Scapegoat, chronicles the 10-year battle of a b727 crew to clear their names.

 

Apr 26, 2018

During qualification training, airline pilots learn to deal with depressurization, engine failure, and  emergency descent. It's a straight-forward process in training. Each of these are memory-response items that must be completed correctly. The training and checking for these emergency procedures evaluates each of these events separately. In fact, compound emergencies are not permitted to be evaluated.

Unlike a "routine" decompression, an explosive decompression is a much more serious event. The time of useful consciousness (TUC) during an explosive decompression is roughly half the TUC of a slower decompression. While the TUC at 35,000 is 30-60 seconds, after an explosive decompression it will be 15-30 seconds.

That is exactly what the pilots of Southwest Flight 1380 were faced with: Explosive Decompression, Engine Severe Damage, and Emergency Descent, and they performed magnificently.

Apr 23, 2018

Russ Goodenough is one of the few people on the planet to become a member of the caterpillar club from both seats of the F-4!

Russ attended the United States Air Force Academy in the second graduating class, and then went on to Air Force Undergraduate Pilot Training (UPT) and followed that with qualification in the top-of-the-line F-4.

During his combat tour of duty at Cam Ranh Air Base in South Vietnam he was shot down, exactly 52 years ago on the date of this recording, April 21, 1966. His dramatic rescue is chronicled, along with actual photos of the rescue, in his memoir, Why Johnny Came Marching Home.

 

Following his combat tour of duty, Russ flew F-4s in Europe, then separated from the Air Force to pursue a career as an airline pilot. He flew all over the South Pacific as a Continental Airlines pilot.

Apr 20, 2018

Aircraft on Ground or AOG is a term in aviation maintenance indicating that a problem is serious enough to prevent an aircraft from flying. Generally there is a rush to acquire the parts to put the aircraft (A/C) back into service, and prevent further delays or cancellations of the planned itinerary. AOG applies to any aviation materials or spare parts that are needed immediately for an aircraft to return to service. AOG suppliers refer qualified personnel and dispatch the parts required to repair the aircraft for an immediate return to service. AOG also is used to describe critical shipments for parts or materials for aircraft "out of service" or OTS at a location.

In aviation, master minimum equipment list, or MMEL, is a categorized list of on-board systems, instruments and equipment that may be inoperative for flight. Specific procedures or conditions may be associated with operation of the relevant item. It is considered by default that any equipment or system related to airworthiness which is not included in the MMEL is required to be operative. The MMEL is defined on a per aircraft model basis.

MEL (Minimum Equipment List): MEL is based upon the MMEL (Master Minimum Equipment List). MMEL is defined on a per aircraft model basis. MEL is prepared by the operator by taking reference of the MMEL keeping in mind the type and number of equipment installed. Initial issue of the MEL and its subsequent revisions will be approved by competent authority.

The philosophy behind MEL is to authorize release of flight with inoperative equipment only when the inoperative equipment does not render the aircraft unairworthy for the particular flight to avoid revenue loss to the operator and discomfort to the passengers.

Limitations, procedures and substitutions may be used to provide conditions under which the inoperative equipment will not make the operation unsafe or the aircraft unairworthy. This is not a philosophy which permits reduced safety in order to fly to a base where repairs can be made, but rather a philosophy which permits safe operations for a take off from a maintenance base or en-route stop.

It may not include items like galley equipment, entertainment systems, passenger convenience equipment, which do not affect the airworthiness of an aircraft. All items which affect the airworthiness of aircraft or safety of those carried on board and are not included in MEL are required to be operative.

Minimum equipment lists are issued to specific aircraft and specific operators. In order to use a minimum equipment list, that specific company must receive a letter of authorization from the national aviation authorities of the countries where the aircraft will operate.

A minimum equipment list is required in the United States by the Federal Aviation Administration:

  • When operating any turbine-powered aircraft such as jets or turboprops.
  • When operating under part 135 (Commuter and on-demand operations)
  • When operating under part 125 (Non-airline large aircraft operations)

The CDL evolved over several years from what was commonly known as a “missing parts list,” which was a list of non-structural external parts of an airplane that were found missing after flight. The missing parts list is known today as the CDL.

The CDL plays an important role in the operator’s ability to safely continue flight operations. It is a list of externally exposed aircraft parts that may be missing for flight while the aircraft remains Airworthy. CDLs are developed by aircraft manufacturers, approved by the FAA, and tailored for each model aircraft.

A CDL is developed for most U.S.-built transport 14 CFR part 25 aircraft and many 14 CFR part 23 aircraft by aircraft manufacturers during the initial certification process. However, they are not a required element for aircraft certification. The manufacturer makes the decision to develop or not to develop a CDL. If deemed necessary, the aircraft manufacturer develops a proposed CDL and submits it to the responsible Aircraft Certification Office (ACO). The ACO reviews, evaluates, conducts the required testing, and coordinates with the appropriate Aircraft Evaluation Group (AEG), if needed, to resolve any problems and/or discrepancies.

Apr 16, 2018

Samme Chittum is an award-winning writer of fiction and nonfiction, and is currently a writer for Smithsonian Channel's Air Disasters series. She has a PhD and two Masters Degrees.

Samme started her journalistic career as a police reporter, covering crimes and accidents. Her first nonfiction book about an air accident was The Flight 981 Disaster: Tragedy, Treachery, and the Pursuit of Truth, the story of the Turkish Airlines DC-10 air disaster that occurred in 1974.

 

Her book Southern Storm: The Tragedy of Flight 242 recounts the tragic crash of Southern Airways Flight 242, a DC-9 that lost power of both engines due to massive water and hail ingestion.

 

Her book about the crash of the Concorde, Last Days of the Concorde: The Crash of Flight 4590 and the End of Supersonic Passenger Travel is now available for pre-order.

Apr 13, 2018

Readiness

The basic needs of the learner must be satisfied before he or she is ready or capable of learning (see Chapter 1, Human Behavior). The instructor can do little to motivate the learner if these needs have not been met. This means the learner must want to learn the task being presented and must possess the requisite knowledge and skill. In SBT, the instructor attempts to make the task as meaningful as possible and to keep it within the learner’s capabilities. Students best acquire new knowledge when they see a clear reason for doing so, often show a strong interest in learning what they believe they need to know next, and tend to set aside things for which they see no immediate need. For example, beginning flight students commonly ignore the flight instructor’s suggestion to use the trim control. These students believe the control yoke is an adequate way to manipulate the aircraft’s control surfaces. Later in training, when they must divert their attention away from the controls to other tasks, they realize the importance of trim. Instructors can take two steps to keep their students in a state of readiness to learn. First, instructors should communicate a clear set of learning objectives to the student and relate each new topic to those objectives. Second, instructors should introduce topics in a logical order and leave students with a need to learn the next topic. The development and use of a well-designed curriculum accomplish this goal. Readiness to learn also involves what is called the “teachable moment” or a moment of educational opportunity when a person is particularly responsive to being taught something. One of the most important skills to develop as an instructor is the ability to recognize and capitalize on “teachable moments” in aviation training. An instructor can find or create teachable moments in flight training activity: pattern work, air work in the local practice area, cross-country, flight review, or instrument proficiency check. Teachable moments present opportunities to convey information in a way that is relevant, effective, and memorable to the student. They occur when a learner can clearly see how specific information or skills can be used in the real world. For example, while on final approach several deer cross the runway. Bill capitalizes on this teachable moment to stress the importance of always being ready to perform a go-around.

Effect

All learning involves the formation of connections and connections are strengthened or weakened according to the law of effect. Responses to a situation that are followed by satisfaction are strengthened; responses followed by discomfort are weakened, either strengthening or weakening the connection of learning. Thus, learning is strengthened when accompanied by a pleasant or satisfying feeling, and weakened when associated with an unpleasant feeling. Experiences that produce feelings of defeat, frustration, anger, confusion, or futility are unpleasant for the student. For example, if Bill teaches landings to Beverly during the first flight, she is likely to feel inferior and be frustrated, which weakens the learning connection. The learner needs to have success in order to have more success in the future. It is important for the instructor to create situations designed to promote success. Positive training experiences are more apt to lead to success and motivate the learner, while negative training experiences might stimulate forgetfulness or avoidance. When presented correctly, SBT provides immediate positive experiences in terms of real world applications. To keep learning pleasant and to maintain student motivation, an instructor should make positive comments about the student’s progress before discussing areas that need improving. Flight instructors have an opportunity to do this during the flight debriefing. For example, Bill praises Beverly on her aircraft control during all phases of flight, but offers constructive comments on how to better maintain the runway centerline during landings.

Exercise

Connections are strengthened with practice and weakened when practice is discontinued, which reflects the adage “use it or lose it.” The learner needs to practice what has been learned in order to understand and remember the learning. Practice strengthens the learning connection; disuse weakens it. Exercise is most meaningful and effective when a skill is learned within the context of a real world application.

Primacy

Primacy, the state of being first, often creates a strong, almost unshakable impression and underlies the reason an instructor must teach correctly the first time and the student must learn correctly the first time. For example, a maintenance student learns a faulty riveting technique. Now the instructor must correct the bad habit and reteach the correct technique. Relearning is more difficult than initial learning. Also, if the task is learned in isolation, it is not initially applied to the overall performance, or if it must be relearned, the process can be confusing and time consuming. The first experience should be positive, functional, and lay the foundation for all that is to follow.

Intensity

Immediate, exciting, or dramatic learning connected to a real situation teaches a learner more than a routine or boring experience. Real world applications (scenarios) that integrate procedures and tasks the learner is capable of learning make a vivid impression and he or she is least likely to forget the experience. For example, using realistic scenarios has been shown to be effective in the development of proficiency in flight maneuvers, tasks, and single-pilot resource management (SRM) skills.

Recency

The principle of recency states that things most recently learned are best remembered. Conversely, the further a learner is removed in time from a new fact or understanding, the more difficult it is to remember. For example, it is easy for a learner to recall a torque value used a few minutes earlier, but it is more difficult or even impossible to remember an unfamiliar one used a week earlier. Instructors recognize the principle of recency when they carefully plan a summary for a ground school lesson, a shop period, or a postflight critique. The instructor repeats, restates, or reemphasizes important points at the end of a lesson to help the learner remember them. The principle of recency often determines the sequence of lectures within a course of instruction. In SBT, the closer the training or learning time is to the time of the actual scenario, the more apt the learner is to perform successfully. This law is most effectively addressed by making the training experience as much like the scenario as possible.

Apr 6, 2018

Anyone in a safety-sensitive position in transportation must be tested for drug use, both pre-employment and on a random basis, as well as for suspected drug use. In airline operations, the following positions are subject to this testing:

Flight crewmember duties.

Flight attendant duties.

Flight instruction duties.

Aircraft dispatcher duties.

Aircraft maintenance and preventive maintenance duties.

Ground security coordinator duties.

Aviation screening duties.

Air traffic control duties.

In addition to the previously-screened marijuana, cocaine and heroin, as of January 2018 the drug tests for synthetic opioids.

Apr 2, 2018

Heath Owens is not the typical professional pilot Ready for Takeoff guest. In fact, Heath is not yet a pilot. But he is an aviation fanatic who has broken the code on how to fly for FREE, and his enthusiasm is contagious, and he has some great ideas for our listeners who want to learn how to get in the air without spending a lot of - or any - money.

And Heath explains how he got started in aviation insurance. I think you're going to find his story fascinating.

Mar 30, 2018

Even if you are type rated the in the airplane, there is a lot more to upgrading than learning how to fly the airplane from a different seat. You'll find that most of the real-life challenges you face as Captain have nothing to do with engine failure on takeoff!

At many airlines, when it took more than 10 years to make Captain, copilots would have a lot of exposure to good and bad Captains, and would have the opportunity to see countless airborne decisions and evaluate their results. With rapid advancement now days, it's possible copilots will not have the extensive mentoring that existed previously.

At most airlines there is some form of New Captain training to give the prospective aircraft commander training and instruction on a variety of operational topics, such as Leadership, Crewmember Mentoring, Crew Resource Management (CRM), Inflight Medical Issues, Decision-Making, Management, Fatigue-Risk Management, Stress, Aviation Law, Company Procedures and Performance.

Mar 26, 2018

Robert "Cujo" Teschner served as the U.S. Air Force's debrief expert during his time as an F-15C instructor pilot at the U.S. Air Force Weapons School at Nellis AFB, NV.  He personally designed and taught the first-ever core debrief fundamentals course to all Weapons School students across all disciplines.  He authored the paper "The Vocabulary of the Debrief," which was published in the Weapons School Review, and served as the subject author and senior adviser on a paper presenting the fundamentals of debrief methodology.  Cujo has spent countless hours teaching debrief fundamentals to both military and business professionals. After retiring from the Air Force, Cujo founded VMax Group.

Mar 23, 2018

Upgrading from airline First Officer (copilot) to Captain involves more than simply moving from the right seat to the left. If a new type rating is required, there will be ground school and simulator training, and the ubiquitous check ride.

Simulator training may consist of traditional Appendix H Training to ATP Practical Test Standards and the newer Advanced Qualification Program, and will be conducted in a Level C or Level D simulator.

After training is complete, the new Captain must complete Operating Experience (OE) - formerly called Initial Operating Experience (IOE) in accordance with FAR 121.434, which consists of 25 hours of supervised inflight training on regular revenue flights with a Line Check Airman in the right seat. At the completion of OE, if it the pilot's initial Captain certification, an FAA Aviation Safety Inspector will ride along on one leg of the OE to observe the PIC's performance during the latter stages of OE.

 

1 2 3 4 5 6 7 Next » 8