Info

Ready For Takeoff - Turn Your Aviation Passion Into A Career

The Ready For Takeoff podcast will help you transform your aviation passion into an aviation career. Every week we bring you instruction and interviews with top aviators in their field who reveal their flight path to an exciting career in the skies.
RSS Feed
Ready For Takeoff - Turn Your Aviation Passion Into A Career
2019
May
April
March
February
January


2018
December
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December


Categories

All Episodes
Archives
Categories
Now displaying: Page 1
May 23, 2019

The document that specifies the requirements of a Flight Review is AC 61-98B. From 61-98B:

Under § 61.56(c) no person may act as PIC of an aircraft unless within the preceding 24 calendar-months that person has accomplished a satisfactory flight review in an aircraft for which that pilot is appropriately rated. An appropriately-rated instructor or other designated person must conduct the flight review. The purpose of the flight review is to provide for a regular evaluation of pilot skills and aeronautical
knowledge.

Pilots and CFIs should be aware that, under § 61.56(d), there is no requirement for pilots who have completed certain proficiency checks and ratings within the preceding 24 calendar-months to accomplish a separate flight review. These accomplishments include satisfactory completion of pilot proficiency checks conducted by the FAA, an approved pilot check airman, a Designated Pilot Examiner (DPE), or a U.S. Armed Force for a pilot certificate, rating, or operating privilege. However, the FAA recommends that pilots consider also accomplishing a review under some of the following circumstances. For example, a pilot with an Airplane Single-Engine Land (ASEL) rating may have recently obtained a glider rating, but may still wish to consider obtaining a flight review in a single-engine airplane if the appropriate 24-month period has nearly expired.

Review of Maneuvers and Procedures:
(1) The maneuvers and procedures covered during the review are those which, in the opinion of the CFI conducting the review, are necessary for the pilot to perform in order to demonstrate that he or she can safely exercise the privileges of his or her pilot certificate.
Accordingly, the CFI should evaluate the pilot’s skills and knowledge to the extent necessary to ensure that he or she can safely operate within regulatory requirements throughout a wide range of conditions. The CFI should always include abnormal and emergency procedures applicable to
the aircraft flown in the flight review.
(2) The CFI may wish to prepare a preliminary plan for the flight review based on an interview or other assessment of the pilot’s qualifications and skills. The CFI should outline a sequence of maneuvers to the pilot taking the review. For example, this may include a cross-country flight to another airport with maneuvers accomplished while en route. It could also include a period of simulated instrument flight time. The CFI should request that the pilot conduct whatever preflight preparation is necessary to complete the planned flight. This preparation should include all items required in part 91, § 91.103, such as checking weather, calculating required runway lengths, calculating Weight and Balance (W&B), completing a flight log, filing a flight plan, and conducting the preflight inspection.
(3) Before beginning the flight portion of the review, the CFI should discuss various operational areas with the pilot. This oral review should include, but not be limited to, areas such as aircraft systems, speeds, performance, meteorological and other hazards (e.g., windshear and wake turbulence), operations in controlled airspace, and abnormal and emergency procedures.
The emphasis during this discussion should be on practical knowledge of recommended procedures and regulatory requirements.
(4) Regardless of the pilot’s experience, the CFI may wish to review at least those maneuvers considered critical to safe flight, such as stalls, slow flight, and takeoffs and landings. Based on his or her in-flight assessment of the pilot’s skills, the CFI may wish to add other maneuvers from the PTS appropriate to the pilot’s grade of certificate. All reviews should include those areas within the PTS identified as “Special Emphasis.” Appendix 5 includes a list of suggested maneuvers. The FAA does not intend this list to be all-inclusive, nor does it limit a CFI’s discretion in selecting other appropriate maneuvers and procedures. To the greatest possible extent, the CFI should organize and sequence the selected maneuvers in a realistic
scenario appropriate to the kind of flying normally done by the pilot.
(5) The role of the CFI during the review is to provide an evaluation. However, the instructor is not limited to this role and may provide specific instruction to an airman on any areas the instructor notes as being weak. This additional instruction does not preclude the pilot’s successful completion of the review as long as the deficiencies are corrected. If the additional instruction does not correct the deficiencies, and/or it becomes apparent to the instructor that additional flights will be necessary, the CFI should discuss the situation with the pilot and proceed accordingly.

May 20, 2019

Gregory Poole is a former Coast Guard flight engineer, based in Southern California. When he was a teenager, he saw a poster of a military helicopter, and that was his inspiration to enlist.

His training was in North Carolina, learning avionics, electrical, mechanical and rescue. He cross-trained in numerous fields.

As an early flight engineer, he performed a rescue at the bottom of a cliff where a car had gone off the road, and he had to conduct the rescue with the rotor blades inches from the face of the cliff. His rescue helicopter was the HH-52, similar to the Sea King helicopter.

As flight engineer, he performed all preflight and post-flight inspections, with special attention to hydraulics. During actual missions, he operated the night spotlight and forward-looking infra-red (FLIR), which was essential in night rescue missions.

Greg also participated in law enforcement missions.

Greg is also an experienced martial artist instructor. He started in Philippines martial arts, then branched in to aikido, tae kwan do, hapkido, jeet kun do and salat. He has developed his own system, and now trains youngsters.

May 16, 2019

In May of last year I was accepted into the Writers Guild Foundation Veterans Writing Project. The program accepts 50 veterans each year (I was turned down the previous year) and holds a 3-day Retreat to launch the year's activities.

We were divided into groups of about 8 veterans and paired with working screen writing professionals to brainstorm our topics and refine our writing process. Then we were mentored throughout the year by more professional writers, with meetings twice each month. those of us who did not live in the Los Angeles area were able to participate via Facebook video and telephone conferences.

I based my script on my Hamfist novel series. I quickly discovered that a screenplay is totally different from a novel, and my script evolved dramatically, mostly due to the feedback of my mentor, Sabrina Almeida. With her help and guidance, my script went from not-ready-for-prime-time to pretty darned good.

And now the yearlong program, for me, is over, and I was invited to "pitch" my script to industry heavyweights. So, two days ago, I went to Los Angeles for the pitch-fest.

Here’s the pitch:

I'm Major George Nolly of the US Air Force

Author of the Hamfist Novel Series, with multiple Best-sellers that have been ranked #1 Fiction in the Vietnam War - History category with over 151,000 units downloaded and paperback sales on Amazon.

I teach Aviation at Metro State University, and I'm a Flight Instructor at United Airlines, where I flew for 26 years after active duty.

I have two masters, and a doctorate in Homeland Security, but before that, I was a cadet at the US Air Force Academy because I wanted to be a pilot, just like my father.

I did two tours in Vietnam with 198 combat missions flying an F-4 fighter jet, and let me tell you, there is nothing in this world that compares to being strapped to two J79 engines pushing 36,000 foot pounds of thrust at Mach 1 while a SAM is closing in on your ass.

It was everything I hoped for and more.

But before I got into my first dogfight, I had to get through my first combat tour.

After pilot training, I went over as a FAC, a Forward Air Controller, in an O-2, which was a tiny, twin-prop Cessna used to fly low to the ground, and spot high-value targets in enemy territory.

It was NOT what I signed up for.

  • And that's where we meet our hero, Hamilton "Hamfist" Hancock, a hotshot pilot with the need for speed, who sabotoges his chance at a fighter assignment by shining his ass on his final flight in pilot training.

He's sent to Vietnam in an O-2, one of the slowest planes in the service, where he meets SPEEDBRAKE, fellow pilot and mentor, who shows him what a FAC really does:

He loiters in the area long enough to direct fighters in for an air strike. The way you do this is at night is by GOING CHRISTMAS TREE, where we would turn on all our exterior lights and light up like a christmas tree to attract enemy ground fire, so that Charlie would reveal himself to our fighters for an air strike.

It's on a close call going Christmas Tree where our hero earns the call sign HAMFIST.

 

When the Base Commander offers winner's choice of aircraft for the pilot with the highest kill ratio, Hamfist sees a way into an F-4, that is, if he can beat his nemesis, Tank, the squadron Top Dog.

However, Hamfist's relentless pursuit leads him to fly fast and loose. When his flying puts others in jeopardy, he is deemed reckless, and sent on mandatory R&R.

While on R&R in Tokyo, he meets SAMANTHA - SAM, a recent Harvard Law Grad. Samantha has just signed up to join the Air Force as a JAG, and has a thing for fighter pilots. For the first time, Hamfist has dreams of something big in his life, other than flying fast.

That dream is interrupted when Hamfist gets word that his Mentor SPEEDBRAKE is shot down, and Hamfist must return to Vietnam to pack up Speedbrake's things for his family.

On his first mission back, distracted by how he left things with Sam, Hamfist gets shot down over the trail, and injured during his rescue.

After he's patched up, he persuades the doc to clear him to fly, even though the full extent of his injuries are not yet known.

The deadline arrives for the competition, and he has just enough time for one more sortie to secure his lead over TANK.

However, when as he enters the target area, he hears a distress call from a downed F-4. Hamfist forfeits his target to rescue the pilot.

Hamfist returns to base as a hero, however, he loses the competition to Tank, and along with that, his dreams of piloting an F-4.

A medical exam reveals that his injuries were more severe than previously thought, and he also loses his Air Force Flight Clearance.

Hamfist is overcome by the failure in his pursuit to follow in his father's footsteps.

Unable to turn to Sam, for fear that her affections will change, now that he will never be a fighter pilot, he severs his relationship with her while she is still in Officer Training.

Hamfist is given the option to leave the service at the end of his tour with an Honorable Discharge, or remain grounded for the rest of his career.

When word of his heroism reaches the private sector, however, Hamfist is offered a job as a civilian test pilot... in an F-4.

Assigned as the Interim Squadron Intel Officer until a replacement arrives, he witnesses the dedication of the men left behind on base while pilots flew their combat missions.

- The maintenance crews that perform 20 man-hours to every one hour he was in the air.

He sees how each person's contribution to the war effort is critical.

Hamfist understands that the War Effort comes before his personal desires, and extends his tour in Vietnam as a Ground officer.

That's when his replacement Intel Officer arrives on base, and Hamilton walks in to brief... Samantha, freshly graduated from Intel School.

 

May 13, 2019

Tom Cappelletti wanted to be a pilot ever since he was a child, but his first Air Force assignment was as an engineer. Yom spent three years at Wright-Patterson Air Force Base as a Test Program Manager before getting an assignment to Undergraduate Pilot Training in the Reserves.

After earning his wings, Tom flew the C-9 aeromedical evacuation aircraft, flying patients and their families to medical facilities all over the united States. He has landed virtually everywhere that has 5000 feet of concrete in the aeromedical evacuation role.

Tom participated in the commissioning of a painting of the C-9 to hang at Scott Air Force Base to commemorate the aircraft.

Tom became an airline pilot with a major carrier, and now flies the B737NG. His routes include Hawaii, Canada, and South America. Like every other pilot at his airline tom is ETOPS (Extended Twin Engine Operations) qualified.

Tom has an eclectic collection of aviation memorabilia, books and prints, and has had many of the items personally signed.

May 9, 2019

From NCBI:

Normalization of deviance is a term first coined by sociologist Diane Vaughan when reviewing the Challenger disaster. Vaughan noted that the root cause of the Challenger disaster was related to the repeated choice of NASA officials to fly the space shuttle despite a dangerous design flaw with the O-rings. Vaughan describes this phenomenon as occurring when people within an organization become so insensitive to deviant practice that it no longer feels wrong. Insensitivity occurs insidiously and sometimes over years because disaster does not happen until other critical factors line up. In clinical practice, failing to do time outs before procedures, shutting off alarms, and breaches of infection control are deviances from evidence-based practice. As in other industries, health care workers do not make these choices intending to set into motion a cascade toward disaster and harm. Deviation occurs because of barriers to using the correct process or drivers such as time, cost, and peer pressure. As in other industries, operators will often adamantly defend their actions as necessary and justified. Although many other high-risk industries have embraced the normalization of deviance concept, it is relatively new to health care. It is urgent that we explore the impact of this concept on patient harm. We can borrow this concept from other industries and also the steps these other high-risk organizations have found to prevent it.

May 6, 2019

From Air Line Pilots Association:

In September 2016, Capt. David Whitson (United) was diagnosed with acute myeloid leukemia, a condition in which white blood cells that manage the body’s immune system form abnormally. The then B-787 first officer was treated at the Texas Oncology–Baylor Charles A. Sammons Cancer Center in Dallas, Tex., where he spent an initial 30 days undergoing tests and chemotherapy.

“I had a mutation called FLT3 that put me at high risk for not reaching remission and also in a high-incidence category for relapse even if remission was achieved,” he recalled, adding, “My best shot was to have a bone marrow transplant, also called a stem cell transplant. Without it, I had a 5 percent chance of survival.”

Whitson was released from the hospital for a brief break. During this period, doctors conducted a bone marrow biopsy and discovered that the pilot’s cancer was in remission, a condition necessary to achieve before a bone marrow transplant could be conducted. Whitson and his doctors quickly found a donor.

“It was hard for me to wrap my head around the fact that a complete stranger would be willing to give me bone marrow stem cells and potentially save my life,” he acknowledged. Whitson endured additional rounds of chemotherapy and a full-body radiation scan to ensure his body was ready and on Dec. 21, 2016, received the transplant. Within several days, his new immune system was up and running.

Thirteen days after the transplant, Whitson was released from the hospital. He noted that prior to the transfusion of stem cells his blood type was B+, but today it’s O-. In addition, the DNA in his blood is different from that in his body.

Whitson encourages everyone to donate blood. “I needed more than a dozen blood and platelet transfusions during my treatments,” he said. The United pilot also urges those interested to join the national bone marrow registry at bethematch.org or www.dkms.org. “There’s a lack of diversity within the registry, and minorities are greatly needed,” he shared.

“Every day is a gift,” Whitson remarked, who credits ALPA’s Aeromedical Office for advising him and helping him jump through the necessary hoops to acquire his special issuance medical certificate and return to the cockpit. He also gave a nod to his medical benefits, noting, “I was on long-term disability for more than two years, and my medical insurance was excellent. Thank you, ALPA!”

May 2, 2019

From the Pilot’s Handbook of Aeronautical Knowledge:

The stability of the atmosphere depends on its ability to
resist vertical motion. A stable atmosphere makes vertical
movement difficult, and small vertical disturbances dampen
out and disappear. In an unstable atmosphere, small vertical air
movements tend to become larger, resulting in turbulent airflow
and convective activity. Instability can lead to significant
turbulence, extensive vertical clouds, and severe weather.
Rising air expands and cools due to the decrease in air
pressure as altitude increases. The opposite is true of
descending air; as atmospheric pressure increases, the
temperature of descending air increases as it is compressed.
Adiabatic heating and adiabatic cooling are terms used to
describe this temperature change.

The adiabatic process takes place in all upward and
downward moving air. When air rises into an area of lower
pressure, it expands to a larger volume. As the molecules
of air expand, the temperature of the air lowers. As a result,
when a parcel of air rises, pressure decreases, volume
increases, and temperature decreases. When air descends,
the opposite is true. The rate at which temperature decreases
with an increase in altitude is referred to as its lapse rate.
As air ascends through the atmosphere, the average rate of
temperature change is 2 °C (3.5 °F) per 1,000 feet.
Since water vapor is lighter than air, moisture decreases air
density, causing it to rise. Conversely, as moisture decreases,
air becomes denser and tends to sink. Since moist air cools
at a slower rate, it is generally less stable than dry air since
the moist air must rise higher before its temperature cools
to that of the surrounding air. The dry adiabatic lapse rate
(unsaturated air) is 3 °C (5.4 °F) per 1,000 feet. The moist
adiabatic lapse rate varies from 1.1 °C to 2.8 °C (2 °F to
5 °F) per 1,000 feet.
The combination of moisture and temperature determine the
stability of the air and the resulting weather. Cool, dry air
is very stable and resists vertical movement, which leads to
good and generally clear weather. The greatest instability
occurs when the air is moist and warm, as it is in the tropical
regions in the summer. Typically, thunderstorms appear on
a daily basis in these regions due to the instability of the
surrounding air.

As air rises and expands in the atmosphere, the temperature
decreases. There is an atmospheric anomaly that can occur;
however, that changes this typical pattern of atmospheric
behavior. When the temperature of the air rises with altitude, a
temperature inversion exists. Inversion layers are commonly
shallow layers of smooth, stable air close to the ground. The
temperature of the air increases with altitude to a certain
point, which is the top of the inversion. The air at the top
of the layer acts as a lid, keeping weather and pollutants
trapped below. If the relative humidity of the air is high, it
can contribute to the formation of clouds, fog, haze, or smoke
resulting in diminished visibility in the inversion layer.
Surface-based temperature inversions occur on clear, cool
nights when the air close to the ground is cooled by the
lowering temperature of the ground. The air within a few
hundred feet of the surface becomes cooler than the air above
it. Frontal inversions occur when warm air spreads over a
layer of cooler air, or cooler air is forced under a layer of
warmer air.

From AC 006B:

Vertical Motion Effects on an Unsaturated Air Parcel. As a bubble or parcel of air ascends (rises), it moves into an area of lower pressure (pressure decreases with height). As this occurs, the parcel expands. This requires energy, or work, which takes heat away from the parcel, so the air cools as it rises. This is called an adiabatic process. The term adiabatic means that no heat transfer occurs into, or out of, the parcel. Air has low thermal conductivity, so transfer of heat by conduction is negligibly small.

The rate at which the parcel cools as it is lifted is called the lapse rate. The lapse rate of a rising, unsaturated parcel (air with relative humidity less than 100 percent) is approximately 3 °C per 1,000 feet (9.8 °C per kilometer). This is called the dry adiabatic lapse rate. This means for each 1,000-foot increase in elevation, the parcel’s temperature decreases by 3 °C. Concurrently, the dewpoint decreases approximately 0.5 °C per 1,000 feet (1.8 °C per kilometer). The parcel’s temperature-dewpoint spread decreases, while its relative humidity increases. 

This process is reversible if the parcel remains unsaturated and, thus, does not lose any water vapor. A descending (subsiding) air parcel compresses as it moves into an area of higher pressure. The atmosphere surrounding the parcel does work on the parcel, and energy is added to the compressed parcel, which warms it. Thus, the temperature of a descending air parcel increases approximately 3 °C per 1,000 feet (9.8 °C per kilometer). Concurrently, the dewpoint increases approximately 0.5 °C per 1,000 feet (1.8 °C per kilometer). The parcel’s temperature-dewpoint spread increases, while its relative humidity decreases.

The parcel and the surrounding environmental air temperatures are then compared. If the lifted parcel is colder than the surrounding air, it will be denser (heavier) and sink back to its original level. In this case, the parcel is stable because it resists upward displacement. If the lifted parcel is the same temperature as the surrounding air, it will be the same density and remain at the same level. In this case, the parcel is neutrally stable. If the lifted parcel is warmer and, therefore, less dense (lighter) than the surrounding air, it will continue to rise on its own until it reaches the same temperature as its environment. This final case is an example of an unstable parcel. Greater temperature differences result in greater rates of vertical motion.

Apr 29, 2019

Patrick McAlee is a dedicated and highly-skilled, aerobatic pilot who mixes his intense personality with his hardcore passion to produce a unique and entertaining product unlike any other. During his routine, Patrick executes his maneuvers to a choreographed music playlist all while practicing precision, professionalism and safety. Since its first inception, Pat’s dream has led him to fly shows all across the nation. He has logged over 1,000 aerobatic hours and over 10,000 hours in over thirty different aircraft. Before making the transition to airshows, Patrick flew in aerobatic competitions for 5 years; he has been performing shows for the past three. Currently Patrick strives to the best entertainer and performer for past and future generations.

Apr 26, 2019

In this age of flight directors, flight management computers and autopilots, it's easy to get into the mode of letting the automation do all the work. And that's good if it enhances safety.

But it's really important to keep your basic stick-and-rudder skills current, and that includes flying an ILS approach without any of the bells and whistles.

So let's discuss a hand-flown ILS flown WITHOUT a flight director or autopilot.

The key to successfully, easily flying a manual ILS is preparation. First, study the approach chart, so you have a complete understanding of all the facilities involved. Take a look at the distance from the glide slope intercept point and the outer marker (if it's part of the approach) to the runway. Examine the glide slope angle, and note if it is OTHER than the standard 3-degrees.

Now, as close to your ETE as possible, get the destination weather. Ideally, this will be right before you prepare for your approach. Now, take out your E6B computer and calculate your groundspeed and wind correction for the approach. If you can't remember how to do this, listen to episode RFT 146 and PRACTICE with your E6B until you can solve a wind problem in under 30 seconds. The only thing that makes this calculation different from what you do with the E6B for your cross-country planning planning is that you will be using only MAGNETIC winds (from ATIS), rather than winds oriented to true north.

When entering your true airspeed into your E6B, you need to know your true airspeed (TAS), based on your indicated airspeed (IAS). You can use the calculator side of your E6B to determine TAS (RFT 148), but, as a guide, TAS increases 2 percent for every 1000 feet above sea level. So, if you are flying your approach at 120 KIAS at an average elevation of 6000 feet MSL, your TAS is [120 + 120(.02X6)] = 120 + 14 = 134. THAT's the number you use for TAS in your E6B.

Once you have calculated your GS and WCA, calculate your descent rate and heading to keep yourself on the localizer and glide slope. Now that you have your groundspeed, you can calculate your 3-degree descent rate by multiplying HALF your groundspeed times 10. In the example above, our descent rate will be 670 feet per minute (FPM).

All of this, of course is simply a guide to get you into the ballpark for an easy, stabilized approach. But if you start out with these values, you will only need minimal corrections to keep your LOC and GS centered.

The only thing left to do when you get to approach minimums and visually acquire the runway is DON'T CHANGE ANYTHING. If you have a crosswind, the runway will not be DIRECTLY in front of you, it will be offset by your WCA.

Apr 22, 2019

From the Fighter Sweep website: Michael Rutledge is a 30 active duty year veteran with almost 12 years enlisted including a 3-year assignment as a Helicopter Rescue Swimmer, followed by 8 years as a Navy SEAL. While at SEAL Team One, he served as an M-60 gunner, Air Operations Specialist, Advanced Training Instructor and Platoon Leading Petty Officer. In 2002, Mike transferred to the U.S. Army to become a Warrant Officer Aviator. Upon graduation from flight school, he was directly assigned to the "Night Stalkers" of the 160th Special Operations Aviation Regiment (Airborne) where he served for 13 years as an MH-47G pilot. His current assignment is the Commander of the West Point Flight Detachment at the United States Military Academy. Mike is also an accomplished aviation author, consultant, speaker, and airshow pilot specializing in vintage WWII aircraft, as well as spending his summers flying crop dusters in the Midwest.

Apr 18, 2019

The Doolittle Raid, also known as the Tokyo Raid, on Saturday, April 18, 1942, was an air raid by the United States on the Japanese capital Tokyo and other places on the island of Honshu during World War II, the first air operation to strike the Japanese Home Islands. It demonstrated that the Japanese mainland was vulnerable to American air attack, served as retaliation for the attack on Pearl Harbor, and provided an important boost to American morale. The raid was planned and led by Lieutenant Colonel James Doolittle of the United States Army Air Forces.

Sixteen B-25B Mitchell medium bombers were launched without fighter escort from the U.S. Navy's aircraft carrierUSS Hornet (CV-8) deep in the Western Pacific Ocean, each with a crew of five men. The plan called for them to bomb military targets in Japan, and to continue westward to land in China—landing a medium bomber on Hornet was impossible. The bombing raid killed about 50 people, including civilians, and injured 400. Fifteen aircraft reached China, but all crashed, while the 16th landed at Vladivostok in the Soviet Union. Of the 80 crew members, 77 initially survived the mission. Eight airmen were captured by the Japanese Army in China; three of those were later executed. The B-25 that landed in the Soviet Union was confiscated, with its crew interned for more than a year before being allowed to "escape" via Soviet-occupied Iran. Fourteen complete crews of five, except for one crewman who was killed in action, returned either to the United States, or to American forces.[

After the raid, the Japanese Army conducted a massive sweep through the eastern coastal provinces of China, in an operation now known as the Zhejiang-Jiangxi campaign, searching for the surviving American airmen and inflicting retribution on the Chinese who aided them, in an effort to prevent this part of China from being used again for an attack on Japan.

The raid caused negligible material damage to Japan, but its consequences had major psychological effects. In the United States, it raised morale. In Japan, it raised doubt about the ability of military leaders to defend the home islands, but the bombing and strafing of civilians also steeled the resolve of many to gain retribution and was exploited for propaganda purposes.[ It also contributed to Admiral Isoroku Yamamoto's decision to attack Midway Island in the Central Pacific—an attack that turned into a decisive strategic defeat of the Imperial Japanese Navy (IJN) by the U.S. Navy in the Battle of Midway. The consequences were most severely felt in China, where Japanese reprisals cost an estimated 250,000 lives.[

Doolittle, who initially believed that the loss of all his aircraft would lead to his court-martial, received the Medal of Honor and was promoted two ranks to brigadier general.

Doolittle and Hornet skipper Captain Marc Mitscher decided to launch the B-25s immediately—10 hours early and 170 nautical miles (310 km; 200 mi) farther from Japan than planned. After re-spotting to allow for engine start and run-ups, Doolittle's aircraft had 467 feet (142 m) of takeoff distance. Although none of the B-25 pilots, including Doolittle, had ever taken off from a carrier before, all 16 aircraft launched safely between 08:20 and 09:19. The B-25s then flew toward Japan, most in groups of two to four aircraft, before flying singly at wave-top level to avoid detection.[

The aircraft began arriving over Japan about noon Tokyo time, six hours after launch, climbed to 1,500 feet (460 m) and bombed 10 military and industrial targets in Tokyo, two in Yokohama, and one each in Yokosuka, Nagoya, Kobe, and Osaka. Although some B-25s encountered light antiaircraft fire and a few enemy fighters (made up of Ki-45s and prototype Ki-61s, the latter being mistaken for Bf 109s) over Japan, no bomber was shot down. Only the B-25 of 1st Lt. Richard O. Joyce received any battle damage, minor hits from antiaircraft fire. B-25 No. 4, piloted by 1st Lt. Everett W. Holstrom, jettisoned its bombs before reaching its target when it came under attack by fighters after its gun turret malfunctioned.[

The Americans claimed to have shot down three Japanese fighters – one by the gunners of the Whirling Dervish, piloted by 1st Lt. Harold Watson, and two by the gunners of the Hari Kari-er, piloted by 1st Lt. Ross Greening. Many targets were strafed by the bombers' nose gunners. The subterfuge of the simulated gun barrels mounted in the tail cones was described afterwards by Doolittle as effective, in that no airplane was attacked from directly behind.[

Fifteen of the 16 aircraft then proceeded southwest off the southeastern coast of Japan and across the East China Sea toward eastern China. One B-25, piloted by Captain Edward J. York, was extremely low on fuel, and headed instead for the Soviet Union rather than be forced to ditch in the middle of the East China Sea. Several fields in Zhejiang province were supposed to be ready to guide them in using homing beacons, then recover and refuel them for continuing on to Chongqing, the wartime Kuomintang capital. The primary base was at Zhuzhou, toward which all the aircraft navigated, but Halsey never sent the planned signal to alert them, apparently because of a possible threat to the task force.[

The raiders faced several unforeseen challenges during their flight to China: night was approaching, the aircraft were running low on fuel, and the weather was rapidly deteriorating. None would have reached China if not for a tail wind as they came off the target, which increased their ground speed by 25 kn (46 km/h; 29 mph) for seven hours. The crews realized they would probably not be able to reach their intended bases in China, leaving them the option of either bailing out over eastern China or crash-landing along the Chinese coast.[

All 15 aircraft reached the Chinese coast after 13 hours of flight and crash-landed or the crews bailed out. One crewman, 20-year-old Corporal Leland D. Faktor, flight engineer/gunner with 1st Lt. Robert M. Gray, was killed during his bailout attempt over China, the only man in that crew to be lost. Two crews (10 men) were missing. The 16th aircraft, commanded by Capt. Edward York (eighth off—AC #40-2242) flew to the Soviet Union and landed 40 miles (65 km) beyond Vladivostok at Vozdvizhenka, where their B-25 was confiscated and the crew interned.

Although York and his crew were treated well, diplomatic attempts to return them to the United States ultimately failed, as the Soviet Union was not at war with Japan and therefore obligated under international law to intern any combatants found on its soil. Eventually, they were relocated to Ashkhabad, 20 miles (32 km) from the Iranian border, and York managed to "bribe" a smuggler, who helped them cross the border into Iran, which at the time was under British-Soviet occupation. From there, the Americans were able to reach a nearby British consulate on 11 May 1943.[ The smuggling was actually staged by the NKVD, according to declassified Soviet archives, because the Soviet government was unable to repatriate them legally in the face of the neutrality pact with Japan and unwilling to openly flout its treaty obligations with Japan in light of the fact that Vladivostok and the rest of the Soviet Far East were essentially defenseless in the face of any potential Japanese retaliation. Nevertheless, by the time of the American aircrew's "escape" from Soviet internment, Japan's armed forces were clearly on the defensive and drawing down their strength in Manchuria in order to reinforce other fronts. Meanwhile, Soviet forces had gained the strategic initiative in Europe. Even if the Americans' "escape" managed to gain significant attention in Tokyo, it was by then thought extremely unlikely that Japan would respond with any sort of military retaliation.

Doolittle and his crew, after parachuting into China, received assistance from Chinese soldiers and civilians, as well as John Birch, an American missionary in China. As did the others who participated in the mission, Doolittle had to bail out, but he landed in a heap of dung (saving a previously injured ankle from breaking) in a paddy in China near Quzhou. The mission was the longest ever flown in combat by the B-25 Mitchell medium bomber, averaging about 2,250 nautical miles (4,170 km).

The Doolittle Raiders held an annual reunion almost every year from the late 1940s to 2013. The high point of each reunion was a solemn, private ceremony in which the surviving Raiders performed a roll call, then toasted their fellow Raiders who had died during the previous year. Specially engraved silver goblets, one for each of the 80 Raiders, were used for this toast; the goblets of those who had died were inverted. Each Raider's name was engraved on his goblet both right side up and upside down. The Raiders drank a toast using a bottle of cognac that accompanied the goblets to each Raider reunion.[ In 2013, the remaining Raiders decided to hold their last public reunion at Fort Walton Beach, Florida, not far from Eglin Air Force Base, where they trained for the original mission. The bottle and the goblets had been maintained by the United States Air Force Academy on display in Arnold Hall, the cadet social center, until 2006. On 19 April 2006, these memorabilia were transferred to the National Museum of the United States Air Force at Wright-Patterson AFB, Ohio.[

On 18 April 2013, a final reunion for the surviving Raiders was held at Eglin Air Force Base, with Robert Hite the only survivor unable to attend.[

The "final toast to fallen comrades" by the surviving raiders took place at the NMUSAF on 9 November 2013, preceded by a B-25 flyover, and was attended by Richard Cole, Edward Saylor, and David Thatcher.

Apr 15, 2019

From Communities Digital News:

There are those who take uncertain steps on IED-ridden battlefields, take to contested waterways, and fly unguarded skies as dangerous threats lurk below. Protecting freedom is how over a million active-duty military men and women support their families.

These Brothers in Arms fight and die, for each other, and for those who can’t fight for themselves.

Since the Global War on Terror began on September 11, 2001, America’s warriors have faced evil on a heightened scale and risked life and limb to quell a hate-filled enemy who does not respect human life.

It was the remarkable esprit de corps, the history and its intimacy as an organization that drew Lt. Col. Stephen Mount to the Marine Corps in 1996. Mount, severely wounded in Iraq, 2004, was given command June 30th, 2016, of Wounded Warrior Battalion-West (WWBn-W), located at Camp Pendleton Calif., now in its tenth year of operation.

SAN DIEGO, 2017. Lt. Col. Stephen Mount at Wounded Warrior Battalion-West  Headquarters Complex, Camp Pendleton, Calif. Photo by Jeanne McKinney for CommDigiNews

There, he is committed to the successful recovery of each Marine assigned to his care.

“I try to be the kind of guy who absorbs the blows and then just figures it out,” said Mount. He chooses to not make drastic decisions right away and let things kind of simmer. “Let’s just figure this out together and go forward,” he tells his Marines.

Absorbing the blows of active-duty service prefaced Mount’s first historic experiences as a UH-1N (Huey) pilot with Helicopter Marine Light Attack Squadron (HMLA)-169. His first deployment in 2001, as part of the Aviation Combat Element (ACE) with the 15th Marine Expeditionary Unit (MEU), took him to Darwin, training with the Australians.

After the twin towers and the Pentagon were hit and hijacked Flight 93 crashed into a Pennsylvania field, the 15th MEU was redirected to the Arabian Sea.

“It was a very anxious and excitable kind of feeling that we were out in the Arabian Sea and the country had been attacked and more than likely we were going to do something about it.”

He was on the flight deck of his ship, watching the first U.S. missile strikes launched in the first round of attacks.

The guided-missile destroyer USS Porter (DDG 78) conducts strike operations against Syria while in the Mediterranean Sea, April 7, 2017. U.S. Navy Photo

Mount’s squadron was flown into the Afghanistan desert and had to scrape out a “pseudo desert airstrip”, that Mount said, “[had] some old abandoned buildings they probably used to run drugs out of.”

By end of November 2001, that pseudo desert airstrip had a name: Camp Rhino, the first U.S. Forward Operating Base (FOB) established in Afghanistan during Operation Enduring Freedom. They went in there with 1st Battalion, 1st Marines under Colonel Brett Bourne.

“It wasn’t a Forward Operating Base in the traditional sense. They dug holes in the sand—that was our perimeter. Then we built ourselves fueling points.”

Mount called flying into the middle of the desert in a foreign country and doing good things “fun times.” The first night he slept by the skid of his aircraft.

“None of our aircraft have any gas. We don’t know what is going to happen. You’re a young man—that’s what you do … it was exciting.”

A sense of finality prevailed. “I can’t get back to the ship until someone lands and gives me more gas,” said Mount.

There was already fighting in the North which had fallen to the Taliban. Gas arrived on C-130’s and U.S. troops followed Hamid Karzai and his boys into Kandahar and then Lashkar Gah, Helmand Province, establishing an airfield at Kandahar.

Mount explains, “The big offensive against the Taliban hadn’t started yet; not until we got there and Karzai could have some assurances that America is here to help you.”

A future home for wounded warriors would come into play as the Global War on Terrorism kicked off.

Operation Iraqi Freedom I, the initial invasion of Iraq, saw U.S. and Coalition Forces quickly defeat Suddam Hussein’s Army. Upheaval and more harrowing times ensued. During Operation Iraqi Freedom II, 2004, the U.S. sent troops in to support the newly-established Provisional Iraqi Government, trying to stabilize the country and protect Iraqi citizens, threatened by growing violence and complexity.

The unpreparedness for the number of casualties and pace of operations going forward took a toll on the military healthcare system. For Mount and others deployed to Iraq and Afghanistan, there was no centralized operation to care for the numbers of wounded warriors too well to be kept in-patient, but not well enough to go back to their units or deploy.

A charismatic yet disenchanted Shiite Muslim cleric, Muqtada al­ Sadr, spread insurrection around Iraq, in opposition to the new government. His die-hard followers formed heavily-armed militias or al-Sadr’s Mahdi Army, who rained bullets and shrapnel on U.S. and Coalition forces.

Al-Sadr’s militia was battered. A conditional truce was made with him for An Najaf and al-Kufa (his home territory) that restricted Coalition forces entry. Al-Sadr used fear and oppression to reinforce control and conducted assassinations, kidnappings, and torture of police and government officials.

The militia would then hide where Coalition forces could not pursue them.

Mount and his flight crew deployed with Colonel Anthony M. Haslam’s 11th MEU and Lt. Col. John L. Mayer’s Landing Team, 1st Battalion, 4th Marines (1/4) in the summer of ‘04.

The MEU took over the battlespace in and around An Najaf by August, in soaring desert temperatures and volatile instability.

“There was an old holy cemetery [Wadi al-Salam],” said Mount, then a Captain. “They [al-Sadr’s militia] would use the crypts and catacombs to build smuggled weapons and launch attacks out to the Iraqi police forces.”

Mount and his crew couldn’t fly over or attack the holy burial grounds or the Imam Ali Mosque.

“There was a police station in Revolutionary Circle…they would lob mortars and shoot at us [every night]. By the time we’d get to our birds and fly over there, they’d [retreat] back to the cemetery,” said Mount.

The night of August 3rd, enough was enough for MEU commanders. A Quick Reaction Force (QRF) and Combined Anti-Armor-Team (CAAT) were summoned to reinforce the police station. American forces came under attack on the main highway that runs by the cemetery, from where al-Sadr’s militia was positioned. Mount’s aircraft section suppressed the threat, allowing our forces to run through.

Again, they were called out.

“We spun up one Huey and two Cobras,” said Mount, who piloted the lead Huey with Co-pilot Drew Turner, Crew Chief Pat Burgess, and Gunner Lance Corporal Teodro Naranjo. Mount’s section circled, seeking to take out a mortar pit that an ‘observer’ had seen by an old gas station near the cemetery.

He missed seeing it on the first “poke your head out, shoot, and get back,” attempt, but on a second circle, further out, the Huey’s number one engine and Mount got a fiery hit.

“I clenched and reflexed, bringing our nose way up and lost all our air speed,” remembered Mount, crediting Turner for landing the battered helicopter right-side up instead of upside down, which would have killed them.

A rifle round entered Mount’s left temple and went behind the bridge of his nose, in front of an eye through the socket and exited the right temple.

“I remember Pat Burgess…dragging me off the skid behind some bricks – waiting there for the guys – a Corpsman ran up and jabbed with morphine.”

“Captain Andrew Turner, ran into the [nearby medical] clinic and came out with an Iraqi physician. Mount had been holding a compress to his wound while trying to chamber a round in his pistol with his teeth. His crew chief, Staff Sergeant Patrick O. Burgess, finally gave him a needed hand in loading.”

Apr 11, 2019

There have been numerous air carrier accidents in which the crew attempted takeoff without the leading and trailing edge flaps extended to the takeoff position. Unlike many general aviation airplanes, large turbojet aircraft require high-lift devices (leading and trailing edge flaps and slats) for the airplane to safely get airborne. In some of these accidents, the Takeoff Warning System (TOWS) was intentionally disabled, preventing the crew from receiving a warning of incorrect airplane configuration.

Here are notable accidents resulting in 746 fatalities:

1974 Lufthansa flight 540, B747, 59 fatalities

1987 Northwest 255, MD 82, 150 fatalities

1988 Delta 1411, B727-200, 14 fatalities

1999 LAPA Flight 3142, B737-200, 65 fatalities

2005 Mandala Airlines 91, B737-200, 144 fatalities

2008 Spanair 5022 - MD 82, 154 fatalities

In every case, if the flight crews had performed their normal pre-takeoff checks, the accidents would have been averted. It is essential that all crew members actually confirm every item on the appropriate checklist.

As an additional mnemonic, many pilots will perform a FEATS check before every takeoff: Flaps, EPRs, Airspeed bugs, Trim, Speed brake.

Apr 8, 2019

Scott A. Huesing is a proven combat leader. He is a retired United States Marine Corps Infantry Major with 24 years of honorable service, both enlisted and as a commissioned officer. His career spanned 10 deployments to over 60 countries worldwide. Throughout his numerous deployments to Iraq, Afghanistan, and the Horn of Africa he planned, led, and conducted hundreds of combat missions under some of the most austere and challenging conditions.
Scott is a published author since 2005. His bestselling book, Echo in Ramadi, (Regnery, 2018) is a snapshot in time that changed the face of operations on the battlefield; a captivating story of Echo Company, 2d Battalion, 4th Marines during the Second Battle of Ramadi in support of the Multi National Forces Surge Strategy in 2006. His true-life account provides keen insights into what may be an unfamiliar world to readers, but very familiar to those, like Scott, who lived it and endured this historic fight. Echo in Ramadi was written to honor the sacrifices and spirit of his Marines and the families they supported. It not simply a war story—it is about the people and the power of human connection that speaks about leadership, team-building, and overcoming adversity under the toughest conditions.
Scott is an expert contributor and has written articles, editorials, and scholarly pieces for USA Today, Fox News Channel, Entercom, The Marine Corps Gazette, Military Times, Townhall, and The Daily Signal. He has been an author for the U.S. Marine Corps doctrine shaping the future of training within the world’s most elite branch of service. He is the creative author for the standard operating procedures for Marine Expeditionary Units, America’s first response force, with The Lightning Press.
Scott is a formally trained public speaker with 25 years of experience in both the military and private sector. He has spoken to audiences as large as 2,000 conveying his thoughts, intent, and goals to motivate listeners. Scott’s natural, outgoing style allows him to connect with audiences to share his experience. Scott dedicates his time to travel to military bases, college programs, veteran organizations, non-profit organizations, corporate leadership conferences, Gold Star Family events, and a multitude of venues to share the story of his epic journey and struggles. He is continually sought out to speak on leadership and his combat experiences—and the importance of writing about them.
Scott is the Executive Director of Save the Brave, a certified non-profit that connects Veterans through outreach programs—their mission is staying proactive to the needs of the Veterans they serve. He is also the President of the 2d Battalion, 4th Marines Association, a non-profit that helps Veterans and active duty Marines.

Apr 4, 2019

From Wikipedia

On the night of 1 July 2002, Bashkirian Airlines Flight 2937, a Tupolev Tu-154 passenger jet, and DHL Flight 611, a Boeing 757 cargo jet, collided in mid-air over Überlingen, a southern German town on Lake Constance. All 69 passengers and crew aboard the Tupolev and the two crew members of the Boeing were killed.

The official investigation by the German Federal Bureau of Aircraft Accident Investigation (GermanBundesstelle für Flugunfalluntersuchung, (BFU)) identified as the main cause of the collision a number of shortcomings on the part of the Swiss air traffic control service in charge of the sector involved, and also ambiguities in the procedures regarding the use of TCAS, the on-board aircraft collision avoidance system.

A year and a half after the crash, on 24 February 2004, Peter Nielsen, the air traffic controller on duty at the time of the collision, was murdered in an apparent act of revenge by Vitaly Kaloyev, a Russian citizen who had lost his wife and two children in the accident.

Bashkirian Airlines Flight 2937 was a chartered flight from Moscow, Russia, to Barcelona, Spain, carrying sixty passengers and nine crew. Forty-five of the passengers were Russian schoolchildren from the city of Ufa in Bashkortostan on a school trip organised by the local UNESCO committee to the Costa Dorada area of Spain. Most of the parents of the children were high-ranking officials in Bashkortostan.[12] One of the fathers was the head of the local UNESCO committee.

The aircraft, a Tupolev Tu-154M registered as RA-85816, was piloted by an experienced Russian crew: 52-year-old Captain Alexander Mihailovich Gross (Александр Михайлович Гросс) and 40-year-old First Officer Oleg Pavlovich Grigoriev (Олег Павлович Григорьев). The captain had more than 12,000 flight hours to his credit. Grigoriev, the chief pilot of Bashkirian Airlines, had 8,500 hours of flying experience and his task was to evaluate Captain Gross's performance throughout the flight. 41-year-old Murat Ahatovich Itkulov (Мурат Ахатович Иткулов), a seasoned pilot with close to 7,900 flight hours who was normally the first officer, did not officially serve on duty due to this being the captain's assessment flight. 50-year-old Sergei Gennadyevich Kharlov, a flight navigator with approximately 13,000 flight hours, and 37-year-old Flight Engineer Oleg Irikovich Valeev, who had almost 4,200 flight hours, joined the three pilots in the cockpit.

DHL Flight 611, a Boeing 757-23APF cargo aircraft registered as A9C-DHL, had originated in Bahrain and was being flown by two Bahrain-based pilots, 47-year-old British Captain Paul Phillips and 34-year-old Canadian First Officer Brant Campioni. Both pilots were very experiencedthe captain had logged close to 12,000 flight hours and the first officer had accumulated more than 6,600 flight hours. At the time of the accident, the aircraft was en route from Bergamo, Italy, to Brussels, Belgium.

The two aircraft were flying at flight level 360 (36,000 feet, 10,973 m) on a collision course. Despite being just inside the German border, the airspace was controlled from Zürich, Switzerland, by the private Swiss airspace control company Skyguide. The only air traffic controller handling the airspace, Peter Nielsen, was working two workstations at the same time. Partly due to the added workload, and partly due to delayed radar data, he did not realize the problem in time and thus failed to keep the aircraft at a safe distance from each other. Less than a minute before the accident he realised the danger and contacted Flight 2937, instructing the pilot to descend by a thousand feet to avoid collision with crossing traffic (Flight 611). Seconds after the Russian crew initiated the descent, their traffic collision avoidance system (TCAS) instructed them to climb, while at about the same time the TCAS on Flight 611 instructed the pilots of that aircraft to descend. Had both aircraft followed those automated instructions, the collision would not have occurred.

Flight 611's pilots on the Boeing jet followed the TCAS instructions and initiated a descent, but could not immediately inform Nielsen because the controller was dealing with Flight 2937. About eight seconds before the collision, Flight 611's descent rate was about 2,400 feet per minute (12 m/s), not quite as rapid as the 2,500 to 3,000 ft/min (13 to 15 m/s) range advised by that jet's TCAS; as for the Tupolev, the pilot disregarded his jet's TCAS instruction to climb, having already commenced his descent as instructed by the controller. Thus, both planes were now descending.

Unaware of the TCAS-issued alerts, Nielsen repeated his instruction to Flight 2937 to descend, giving the Tupolev crew incorrect information as to the position of the DHL plane (telling them that the Boeing was to the right of the Tupolev when it was in fact to the left).

The aircraft collided at 23:35:32 local time, at almost a right angle at an altitude of 34,890 feet (10,630 m), with the Boeing's vertical stabilizer slicing completely through Flight 2937's fuselage just ahead of the Tupolev's wings. The Tupolev broke into several pieces, scattering wreckage over a wide area. The nose section of the aircraft fell vertically, while the tail section with the engines continued, stalled, and fell. The crippled Boeing, now with 80% of its vertical stabilizer lost, struggled for a further seven kilomters (four miles) before crashing into a wooded area close to the village of Taisersdorf at a 70-degree downward angle. Each engine ended up several hundred meters away from the main wreckage, and the tail section was torn from the fuselage by trees just before impact. All 69 people on the Tupolev, and the two on board the Boeing, died.

Apr 4, 2019

From the Pilot’s Handbook of Aeronautical Knowledge:

The stability of the atmosphere depends on its ability to
resist vertical motion. A stable atmosphere makes vertical
movement difficult, and small vertical disturbances dampen
out and disappear. In an unstable atmosphere, small vertical air
movements tend to become larger, resulting in turbulent airflow
and convective activity. Instability can lead to significant
turbulence, extensive vertical clouds, and severe weather.
Rising air expands and cools due to the decrease in air
pressure as altitude increases. The opposite is true of
descending air; as atmospheric pressure increases, the
temperature of descending air increases as it is compressed.
Adiabatic heating and adiabatic cooling are terms used to
describe this temperature change.

The adiabatic process takes place in all upward and
downward moving air. When air rises into an area of lower
pressure, it expands to a larger volume. As the molecules
of air expand, the temperature of the air lowers. As a result,
when a parcel of air rises, pressure decreases, volume
increases, and temperature decreases. When air descends,
the opposite is true. The rate at which temperature decreases
with an increase in altitude is referred to as its lapse rate.
As air ascends through the atmosphere, the average rate of
temperature change is 2 °C (3.5 °F) per 1,000 feet.
Since water vapor is lighter than air, moisture decreases air
density, causing it to rise. Conversely, as moisture decreases,
air becomes denser and tends to sink. Since moist air cools
at a slower rate, it is generally less stable than dry air since
the moist air must rise higher before its temperature cools
to that of the surrounding air. The dry adiabatic lapse rate
(unsaturated air) is 3 °C (5.4 °F) per 1,000 feet. The moist
adiabatic lapse rate varies from 1.1 °C to 2.8 °C (2 °F to
5 °F) per 1,000 feet.
The combination of moisture and temperature determine the
stability of the air and the resulting weather. Cool, dry air
is very stable and resists vertical movement, which leads to
good and generally clear weather. The greatest instability
occurs when the air is moist and warm, as it is in the tropical
regions in the summer. Typically, thunderstorms appear on
a daily basis in these regions due to the instability of the
surrounding air.

As air rises and expands in the atmosphere, the temperature
decreases. There is an atmospheric anomaly that can occur;
however, that changes this typical pattern of atmospheric
behavior. When the temperature of the air rises with altitude, a
temperature inversion exists. Inversion layers are commonly
shallow layers of smooth, stable air close to the ground. The
temperature of the air increases with altitude to a certain
point, which is the top of the inversion. The air at the top
of the layer acts as a lid, keeping weather and pollutants
trapped below. If the relative humidity of the air is high, it
can contribute to the formation of clouds, fog, haze, or smoke
resulting in diminished visibility in the inversion layer.
Surface-based temperature inversions occur on clear, cool
nights when the air close to the ground is cooled by the
lowering temperature of the ground. The air within a few
hundred feet of the surface becomes cooler than the air above
it. Frontal inversions occur when warm air spreads over a
layer of cooler air, or cooler air is forced under a layer of
warmer air.

From AC 006B:

Vertical Motion Effects on an Unsaturated Air Parcel. As a bubble or parcel of air ascends (rises), it moves into an area of lower pressure (pressure decreases with height). As this occurs, the parcel expands. This requires energy, or work, which takes heat away from the parcel, so the air cools as it rises. This is called an adiabatic process. The term adiabatic means that no heat transfer occurs into, or out of, the parcel. Air has low thermal conductivity, so transfer of heat by conduction is negligibly small.

The rate at which the parcel cools as it is lifted is called the lapse rate. The lapse rate of a rising, unsaturated parcel (air with relative humidity less than 100 percent) is approximately 3 °C per 1,000 feet (9.8 °C per kilometer). This is called the dry adiabatic lapse rate. This means for each 1,000-foot increase in elevation, the parcel’s temperature decreases by 3 °C. Concurrently, the dewpoint decreases approximately 0.5 °C per 1,000 feet (1.8 °C per kilometer). The parcel’s temperature-dewpoint spread decreases, while its relative humidity increases. 

This process is reversible if the parcel remains unsaturated and, thus, does not lose any water vapor. A descending (subsiding) air parcel compresses as it moves into an area of higher pressure. The atmosphere surrounding the parcel does work on the parcel, and energy is added to the compressed parcel, which warms it. Thus, the temperature of a descending air parcel increases approximately 3 °C per 1,000 feet (9.8 °C per kilometer). Concurrently, the dewpoint increases approximately 0.5 °C per 1,000 feet (1.8 °C per kilometer). The parcel’s temperature-dewpoint spread increases, while its relative humidity decreases.

The parcel and the surrounding environmental air temperatures are then compared. If the lifted parcel is colder than the surrounding air, it will be denser (heavier) and sink back to its original level. In this case, the parcel is stable because it resists upward displacement. If the lifted parcel is the same temperature as the surrounding air, it will be the same density and remain at the same level. In this case, the parcel is neutrally stable. If the lifted parcel is warmer and, therefore, less dense (lighter) than the surrounding air, it will continue to rise on its own until it reaches the same temperature as its environment. This final case is an example of an unstable parcel. Greater temperature differences result in greater rates of vertical motion.

Apr 1, 2019

Gabriel Staschill is an ATC controller in Germany, and he shares insights into the similarities, and differences, between air traffic controllers and pilots.

Mar 28, 2019

From Wikipedia:

In the late 1960s, a series of controlled flight into terrain (CFIT) accidents took the lives of hundreds of people. A CFIT accident is one where a properly functioning airplane under the control of a fully qualified and certified crew is flown into terrain, water or obstacles with no apparent awareness on the part of the crew.

Beginning in the early 1970s, a number of studies examined the occurrence of CFIT accidents. Findings from these studies indicated that many such accidents could have been avoided if a warning device called a ground proximity warning system (GPWS) had been used. As a result of these studies and recommendations from the U.S. National Transportation Safety Board (NTSB), in 1974 the FAA required all large turbine and turbojet airplanes to install TSO-approved GPWS equipment.

The ICAO recommended the installation of GPWS in 1979.

C. Donald Bateman, a Canadian-born engineer, developed and is credited with the invention of GPWS.[

In March 2000, the U.S. FAA amended operating rules to require that all U.S. registered turbine-powered airplanes with six or more passenger seats (exclusive of pilot and copilot seating) be equipped with an FAA-approved TAWS. The mandate affects aircraft manufactured after March 29, 2002.

Prior to the development of GPWS, large passenger aircraft were involved in 3.5 fatal CFIT accidents per year, falling to 2 per year in the mid-1970s. A 2006 report stated that from 1974, when the U.S. FAA made it a requirement for large aircraft to carry such equipment, until the time of the report, there had not been a single passenger fatality in a CFIT crash by a large jet in U.S. airspace.[

After 1974, there were still some CFIT accidents that GPWS was unable to help prevent, due to the "blind spot" of those early GPWS systems. More advanced systems were developed.

Older TAWS, or deactivation of the EGPWS, or ignoring its warnings when airport is not in its database, or even the entire EGPWS altogether still leave aircraft vulnerable to possible CFIT incidents. In April 2010, a Polish Air Force Tupolev Tu-154M aircraft crashed near Smolensk, Russia, in a possible CFIT accident killing all passengers and crew, including the Polish President.[11][12][13][14] The aircraft was equipped with TAWS made by Universal Avionics Systems of Tucson. According to the Russian Interstate Aviation Committee TAWS was turned on. However, the airport where the aircraft was going to land (Smolensk (XUBS)) is not in the TAWS database. In January 2008 a Polish Air Force Casa C-295M crashed in a CFIT accident near Mirosławiec, Poland, despite being equipped with EGPWS; the EGPWS warning sounds had been disabled, and the pilot-in-command was not properly trained with EGPWS.[

The FAA specifications[19]have detailed requirements for when certain warnings should sound in the cockpit.

The system monitors an aircraft's height above ground as determined by a radar altimeter. A computer then keeps track of these readings, calculates trends, and will warn the flight crew with visual and audio messages if the aircraft is in certain defined flying configurations ("modes").

The modes are:

  1. Excessive descent rate ("SINK RATE" "PULL UP")[
  2. Excessive terrain closure rate ("TERRAIN" "PULL UP")
  3. Altitude loss after take off or with a high power setting ("DON'T SINK")
  4. Unsafe terrain clearance ("TOO LOW – TERRAIN" "TOO LOW – GEAR" "TOO LOW – FLAPS")
  5. Excessive deviation below glideslope ("GLIDESLOPE")
  6. Excessively steep bank angle ("BANK ANGLE")
  7. Windshear protection ("WINDSHEAR")

The traditional GPWS does have a blind spot. Since it can only gather data from directly below the aircraft, it must predict future terrain features. If there is a dramatic change in terrain, such as a steep slope, GPWS will not detect the aircraft closure rate until it is too late for evasive action.

In the late 1990s improvements were developed and the system is now named "Enhanced Ground Proximity Warning System" (EGPWS/TAWS). The system is combined with a worldwide digital terrain database and relies on Global Positioning System (GPS) technology. On-board computers compare current location with a database of the Earth's terrain. The Terrain Display gives pilots a visual orientation to high and low points nearby the aircraft.

EGPWS software improvements are focused on solving two common problems; no warning at all, and late or improper response.

The primary cause of CFIT occurrences with no GPWS warning is landing short. When the landing gear is down and landing flaps are deployed, the GPWS expects the airplane to land and therefore, issues no warning. EGPWS introduces the Terrain Clearance Floor (TCF) function, which provides GPWS protection even in the landing configuration.

The occurrence of a GPWS alert typically happens at a time of high workload and nearly always surprises the flight crew. Almost certainly, the aircraft is not where the pilot thinks it should be, and the response to a GPWS warning can be late in these circumstances. Warning time can also be short if the aircraft is flying into steep terrain since the downward looking radio altimeter is the primary sensor used for the warning calculation. The EGPWS improves terrain awareness and warning times by introducing the Terrain Display and the Terrain Data Base Look Ahead protection.

In commercial and airline operations there are legally mandated procedures that must be followed should an EGPWS caution or warning occur. Both pilots must respond and act accordingly once the alert has been issued. An Indonesian captain has been charged with manslaughter for not adhering to these procedures.

Main article: TAWS § TAWS Types

TAWS equipment is not required by the U.S. FAA in piston-engined aircraft, but optional equipment categorized as TAWS Type C may be installed. Depending on the type of operation, TAWS is only required to be installed into turbine-powered aircraft with six or more passenger seats.

A smaller and less expensive version of EGPWS was developed by AlliedSignal (now merged with Honeywell) for general aviation and private aircraft.

For fast military aircraft, the high speed and low altitude that may frequently be flown make traditional GPWS systems unsuitable, as the blind spot becomes the critical part. Thus, an enhanced system is required, taking inputs not only from the radar altimeter, but also from inertial navigation system (INS), Global Positioning System(GPS), and flight control system (FCS), using these to accurately predict the flight path of the aircraft up to 5 miles (8.0 km) ahead. Digital maps of terrain and obstacle features are then used to determine whether a collision is likely if the aircraft does not pull up at a given pre-set g-level. If a collision is predicted, a cockpit warning may be provided. This is the type of system deployed on aircraft such as the Eurofighter Typhoon.[22] The U.S. FAA has also conducted a study about adapting 3-D military thrust vectoring to recover civil jetliners from catastrophes.

On May 5, 2016 a military GPWS called Automatic Ground Collision Avoidance System (Auto-GCAS) equipped aboard an F-16 made a dramatic save after a trainee pilot lost consciousness from excessive G forces during basic fighter maneuver training. In an approximately 55 degree nose down attitude at 8,760 ft and 652 KIAS(750 mph), the Auto-GCAS detected the aircraft was going to strike the terrain and executed an automatic recovery and saved the pilot's life.

Mar 25, 2019

Pierre-Henri (nick name Até) is a dual Canadian and French citizen. Até grew up on RAF Linton-On-Ouse with an exchange instructor father on the RAF Jet Provost.

After being Europe’s youngest pilot at 15 in 2001 and flying in the French national Precision Flying team for the 2006 World Championships, he joined the French Navy to fly jets.

 After 26 months as an exchange Officer in the US NAVY he graduated as a Naval Aviator and flew Super-Etendard from the aircraft carrier Charles de Gaulle.

In 2014 he transitioned to the Dassault Rafale.

Até deployed several times including after the 2015 French terrorist attacks.

He flew missions over Iraq, flying combat missions from the French aircraft carrier both at night and day.
He received a Cross for Military Valour for meritorious action in the face of the enemy.

 Flying several seasons in the French Navy Tactical Display as wingman he became the Leader of the display in 2017. Meanwhile, he was appointed Rafale Navy Subject Matter Expert at just 29 and chief instructor for the Rafale in the Navy at 30 years old.

 Leaving the military to fly for a Major Airline on the Boeing 737MAX, he decided to share his experience.

Até holds over 2500 hours of flight time including more than 1850 hours on fighter aircraft.
He flew a wide range of aircraft from general aviation or aerobatic aircraft to Business jets and of course fighter aircraft.

He has completed over 200 carrier landings.

Enjoying triathlon, he took part in the 2007 Amateur Long distance Triathlon World Championships and in the 2009 Amateur Short Distance Duathlon World Championships.

He has spoken for events or companies like Dassault, Safran, MBDA, Thales, The London Tech Week, EdTechXEurope, and banks

Até is married with a family of three and now lives in Hampshire, UK.

Mar 21, 2019

The Women In Aviation conference was held in Long Beach from 14-16 March 2019. Our previous guest, Jennifer Aupke, attended and is providing an exciting recap of the event, including her meeting with notable aviation luminaries.

WAI Membership is open to women and men from all segments of the aviation industry, and all members may participate in their numerous scholarships. For more membership information, visit the WAI website.

Mar 18, 2019

Experienced Combat Rescue Instructor Pilot 👣 with a demonstrated history building teams and innovating for military officer training and combat planning and operations. Experienced in planning, programming, budget and execution operations at multiple levels as well as requirements management and operational test and evaluations. 340 combat hours and 76 saves. Motivational speaker, blogger, and change agent.

Previously served as executive officer to MAJCOM leadership (Four and Two star generals and SES), learning strategic communication and high level task management covering multiple directorates and operational capabilities. Ranked #1 of 17 execs in general officer’s career.

Skilled in Government Acquisition (Program Manager lvl 1), PPBE, Requirements management and Operational Test and Evaluation. Served multiple deployments to Iraq and Afghanistan. Airplane and Rotary wing Multiengine Land Instrument and commercial Rating.

Innovator. Disruptor. Connector. Strong operations professional with a global perspective- M.S. focused in Leadership and Liberal Studies from Duquesne University. AFWERX contributor, DEF AGORA lead, Principal/Founder The Milieux Project, Advisory Board Member, GirlApproved.

Member of: EAA, WAI, Whirly Girls, and the Friends of CAP

Mar 13, 2019

Deborah Hecker originally had no intention of becoming a pilot. She graduated college with a degree in International Relations with the intention of becoming an attorney, went backpacking through the Middle East, and returned to study for her LSAT (Law School Admissions Test). On her birthday, a friend gave her a present of an airplane introductory flight, and she was hooked.

She bought a used Cessna 172 and pursued her ratings. She built up her time and got her first flying job flying automotive parts around the northeast. She later was hired by Piedmont, and eventually ended up flying for American Airlines.

Deborah performed management duties for American in addition to her flying, and worked her way up to Chief Pilot.

Deborah also has created several scholarships, all under the umbrella of Women In Aviation International (WAI). These scholarships are open to men as well as women - the only requirement is to be a member of WAI:

Keep Flying Scholarship

American Airlines Engineering Scholarship

American Airlines Veterans Initiative Scholarship

Mar 7, 2019

Adapted from Aero Crew News

Captain Valerie Walker started her aviation career in unconventional, adventurous ways full of interesting challenges. She was a flight instructor, police aerial patrol pilot in fixed wing and helicopters, DC-3 bush-pilot in Botswana, South Africa, Flight Test Pilot for Plane & Pilot and Air Progress magazines, plus various freelance aviation jobs. She was hired into Western Airlines’ first class to include a female airline pilot and many years later retired from Delta Airlines as a captain rated on the 727, 737, 757 and 767. Throughout her career she pursued her second passion in martial arts and continues to train, teach and hone that craft. On March 8, 1976, she was hired into Western Airlines’ first class to include a female airline pilot. Martial arts and flying have always been her two passions. Martial arts had to be put on the back-burner as she put everything she had into aviation. she built her flying experience as a with less than reassuring equipment or procedural safety margins. In her teens and twenties, the military didn’t accept women as pilots, so her career path was unconventional, adventurous and full of interesting challenges that made her adaptable and able to think outside the box. Later, aviation blessed her with the resources to pursue a variety of martial arts disciplines, and she’s done so for the last 35 years. She became a first-degree black belt in Kenpo Karate while continuing to train in Wing Chun, Jiu Jitsu, Aikido, Hapkido and Kendo. After 9/11, Valerie was one of 40 airline pilots selected to be in the first class of Federal Flight Deck Officers. They trained with Special Forces instructors in hand-to-hand combat and firearm retention, as well as in law and shoot/don’t shoot scenarios. At that time, she began developing a combination of the best common principles and thought processes from all of my martial arts disciplines. Her goal was to develop a 10-minute briefing for flight crews with no martial arts backgrounds yet who might encounter a terrorist situation. An airplane isn’t a politely scripted martial arts dojo. It’s a place where an unexpected real life-or-death situation can occur which requires us to be situationally aware and employ a few tools that are easily remembered; that don’t require a great deal of fine motor-skill finesse, and are good for fighting in the tight confines of a hollow tube that’s shooting through the air at Mach .82 with its tail on fire with no visible means of support and packed with panicked strangers. Valerie retired from Delta Airlines and still teaches martial arts, still trains, and is still always learning.

Mar 4, 2019

From Wikipedia:

Aponte was raised and educated in San Juan, the capital of Puerto Rico. After receiving his primary and secondary education, he enrolled in the University of Puerto Rico and joined the campus ROTC program. On December 29, 1972, he earned a Bachelor of Science degree in civil engineering and was commissioned a Second Lieutenant in the United States Air Force.

Aponte was assigned to Moody Air Force Base in the state of Georgia and completed his pilot training in August 1974. He was then reassigned to the 27th Tactical Fighter Wing at Cannon Air Force BaseNew Mexicoas pilot-weapons system officer and aircraft commander General Dynamics F-111D. He was promoted to First Lieutenant on May 1, 1975. Aponte flew the F-111 F and D models, the 02-A and T-38 aircraft.F-111 - Type of aircraft flown by Aponte

Aponte became a Captain on May 1, 1977 and served as aircraft commander and instructor pilot of the F-111F aircraft of the 48th Tactical Fighter WingRoyal Air Force Lakenheath in the United Kingdom from August 1978 to May 1981. During this period, he earned his Master of Science degree in management science from Troy State University.

In May 1981, he returned to the United States and served as instructor pilot of the 0-2A aircraft, assigned to the 549th Tactical Air Support Training Squadron at Patrick Air Force Base in Florida. During this period, Aponte attended the United States Marine CorpsWeapons and Tactics Instructor School in Marine Corps Air Station Yuma located in Arizona, the United States Air Force Squadron Officer's School and United States Air Force Air Command and Staff College (the latter two by correspondence). He served at Patrick Air Force Base until May 1984, when he was sent to Howard Air Force Base in Panama. Aponte was promoted to major on October 1, 1984 and was the chief of the Latin American Political Military Affairs Division and deputy director for Latin American Affairs.

On June 1988, Aponte was reassigned to Cannon Air Force Base in New Mexico where he served as aircraft commander F111-D, 523rd Tactical Fighter Squadron and from 1989 to December 1989 as chief, Quality Assurance of 27th Tactical Fighter Group.[

In August 1990, Aponte joined the Air Force Reserve and was assigned to Deputy Chief of Staff for Air and Space Operations Western Hemisphere Division in the Pentagon in Washington, D.C.. At the Pentagon, Aponte was the international political officer who led the reserve officers assigned to the Western Hemisphere, European and Defense Attached Directorates. In 1992, the U.S. Air Force Demonstration Squadron, The Thunderbirds, selected him as the Spanish Language Narrator for their highly successful Latin America Tour. He was promoted to Lieutenant Colonel on June 18, 1993 and completed by seminar Air War College in 1994. From November 1999 to January 2001, he served as individual mobilization augmentee to Deputy Under Secretary International Affairs. He was promoted to the rank of Colonel on August 1, 1997.

In January 2001, he was assigned as a mobilization assistant to the deputy to the Chief Air Force Reserve. There he led transformation efforts and was a tiger team member in response to frequent mobilization and demobilization issues resulting from Operations Enduring Freedom and Iraqi Freedom.

In April 2003, Aponte became the Deputy Director for Operations, Headquarters United States Southern Command in Miami, Florida. Aponte was promoted to Brigadier General on March 1, 2003. In October 2004, he was named Director, J-7, of the United States Southern Command.

His directorate is the focal point for transformation initiatives, knowledge management, experimentation and gaming within the U. S. Southern Command. The directorate seeks out new concepts and rigorously tests them both in simulation and as part of operational experiments. The first transformation initiative was the startup of the Secretary of Defense mandated Standing Joint Force Headquarters (SJFHQ). The SJFHQ, consists of planning, operations, knowledge management, and information superiority experts who form the backbone of the Joint Task Force command structure in the event of contingency operations. Aponte retired July 1, 2007.

Feb 28, 2019

From Ops Group

Starting 28th March 2019, a new trial will be implemented on the NAT called ASEPS (Advanced Surveillance Enhanced Procedural Separation) using ADS-B in the Shanwick, Gander and Santa Maria FIRs.

Compliant aircraft will see a reduction in longitudinal separation to as close as 14 NM. This is not restricted to particular tracks or altitudes, just between properly equipped aircraft – you’ll need RVSM/HLA approval, ADS-B, and to be fully PBCS compliant (that means meeting the specifications of RNP4, RCP240 and RSP180). Read this ICAO Bulletin for all the details.

When the ASEPS trial starts, there will also be some changes to the contingency and weather deviation procedures. Before, there was a lot of confusion around the wording of these two procedures – this has now been made much clearer, and they have even included a nice little graphic to help us understand what to do. Read this ICAO Bulletin for all the details.

 

ICAO have published all these changes in their updated NAT 007 Doc valid for 28th March 2019.

Further reading:

  • On Nov 1st we had a call with 140 Opsgroup members about upcoming changes on the NAT in 2019, and how we can effect change. Opsgroup members can find the PDF notes of this in your Dashboard.
  • A big thing driving the ASEPS trial is the rollout of Space-based ADS-B, which is scheduled to complete its deployment by 30 Dec 2018, giving us worldwide, pole-to-pole surveillance of aircraft. For more on that, and how it will affect operations on the NAT specifically, read the article by Mitch Launius here.
  • Use our quick guide to figure out where you are welcome on the NAT, depending on what equipment and training you have.
  • All the big changes on the NAT in 2018 are covered on our page here.
1 2 3 4 5 6 7 Next » 12