Info

Ready For Takeoff - Turn Your Aviation Passion Into A Career

The Ready For Takeoff podcast will help you transform your aviation passion into an aviation career. Every week we bring you instruction and interviews with top aviators in their field who reveal their flight path to an exciting career in the skies.
RSS Feed
Ready For Takeoff - Turn Your Aviation Passion Into A Career
2023
December
October
September
July
June
May
April
March
February
January


2022
December
November
October
September
August
July
June
May
April
March
February
January


2021
December
November
October
September
August
July
June
May
April
March
February
January


2020
December
November
October
September
August
July
June
May
April
March
February
January


2019
December
November
October
September
August
July
June
May
April
March
February
January


2018
December
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December


Categories

All Episodes
Archives
Categories
Now displaying: Page 1
Aug 11, 2018

From Wikipedia:

Center-of-Gravity Limits
Center of gravity (CG) limits are specified longitudinal (forward and aft) and/or lateral (left and right) limits within which the aircraft's center of gravity must be located during flight. The CG limits are indicated in the airplane flight manual. The area between the limits is called the CG range of the aircraft.
Weight and Balance
When the weight of the aircraft is at or below the allowable limit(s) for its configuration (parked, ground movement, take-off, landing, etc.) and its center of gravity is within the allowable range, and both will remain so for the duration of the flight, the aircraft is said to be within weight and balance. Different maximum weights may be defined for different situations; for example, large aircraft may have maximum landing weights that are lower than maximum take-off weights (because some weight is expected to be lost as fuel is burned during the flight). The center of gravity may change over the duration of the flight as the aircraft's weight changes due to fuel burn or by passengers moving forward or aft in the cabin.
Reference Datum
The reference datum is a reference plane that allows accurate, and uniform, measurements to any point on the aircraft. The location of the reference datum is established by the manufacturer and is defined in the aircraft flight manual. The horizontal reference datum is an imaginary vertical plane or point, placed along the longitudinal axis of the aircraft, from which all horizontal distances are measured for weight and balance purposes. There is no fixed rule for its location, and it may be located forward of the nose of the aircraft. For helicopters, it may be located at the rotor mast, the nose of the helicopter, or even at a point in space ahead of the helicopter. While the horizontal reference datum can be anywhere the manufacturer chooses, most small training helicopters have the horizontal reference datum 100 inches forward of the main rotor shaft centerline. This is to keep all the computed values positive. The lateral reference datum is usually located at the center of the helicopter.
Arm
The arm is the horizontal distance from the reference datum to the center of gravity (CG) of an item. The algebraic sign is plus (+) if measured aft of the datum or to the right side of the center line when considering a lateral calculation. The algebraic sign is minus (-) if measured forward of the datum or the left side of the center line when considering a lateral calculation.[1]
Moment
The moment is the moment of force that results from an object’s weight acting through an arc that is centered on the zero point of the reference datum distance. Moment is also referred to as the tendency of an object to rotate or pivot about a point (the zero point of the datum, in this case). The further an object is from this point, the greater the force it exerts. Moment is calculated by multiplying the weight of an object by its arm.

There's much more information in the FAA Weight And Balance Handbook.

0 Comments
Adding comments is not available at this time.