Info

Ready For Takeoff - Turn Your Aviation Passion Into A Career

The Ready For Takeoff podcast will help you transform your aviation passion into an aviation career. Every week we bring you instruction and interviews with top aviators in their field who reveal their flight path to an exciting career in the skies.
RSS Feed
Ready For Takeoff - Turn Your Aviation Passion Into A Career
2023
December
October
September
July
June
May
April
March
February
January


2022
December
November
October
September
August
July
June
May
April
March
February
January


2021
December
November
October
September
August
July
June
May
April
March
February
January


2020
December
November
October
September
August
July
June
May
April
March
February
January


2019
December
November
October
September
August
July
June
May
April
March
February
January


2018
December
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December


Categories

All Episodes
Archives
Categories
Now displaying: June, 2019
Jun 27, 2019

From AVweb:
Pull the mixture or condition lever and the propeller comes to a stop. Turn off the switches and what had been saturated with noise and vibration becomes still and quiet. After removing your headset and while sitting in the momentary silence that follows a flight, perhaps you’ll hear the engine ticking as heat dissipates. It’s time to pack up and leave the cockpit: Your work is done, right? No, not quite. To get the full benefit of the experience you just had, to learn from every flight, you need to spend just a few moments debriefing your flight.

Your post-flight debrief doesn’t have to be detailed. Just ask yourself a few questions, and provide honest answers. Your briefing also can be very structured, with a personalized debriefing form and lists of the myriad tasks you performed or planned, plus a scoring mechanism to fairly and objectively judge your performance. The most effective way to debrief, and the most likely system that actually will get used is probably somewhere in between. Regardless of how you debrief, the objective is to review the manner in which you conducted the just-ended flight so you can learn from your actions and be even better next time you fly.

Most pilot and flight instructor texts give a passing nod to the post-flight briefing. Virtually all declare it to be a highly important part of the flight-training process. Most decry the “lecture” method, in which the instructor tells the student what he or she did right and in what areas he or she needs to improve. The consensus is that better results come from asking the student to critique his or her performance, with the discussion guided, but not totally led, by the flight instructor. The biggest obstacles to making this technique work, according to the FAA’s Flight Instructor Handbook, are the student’s lack of experience and objectivity, which result in an inability to properly assess his/her performance; the fatigue state of a student after a lesson, especially in the early stages of pilot training; and an instructor’s lack of familiarity with good debriefing techniques. Another factor is the instructor or student’s unwillingness to spend the time necessary to conduct a useful post-flight debriefing.

I’ve not yet found any FAA guidance on extending the concept of a post-flight briefing to a pilot who is critiquing his or her performance following a day-to-day, non-instructional flight. Yet the vast majority of our flying happens without an instructor by our side, and available to review the flight afterward. Although instructors present us the training needed to earn certificates and ratings, and occasionally provide a refresher in the form of a flight review, an instrument proficiency check (IPC) and other recurrent training, we learn most from our own experiences as pilot-in-command in real-world situations.

Psychologist and flight instructor Dr. Janet Lapp is a proponent of the post-flight self-brief. “What happens during the crucial period of time immediately following a behavior, or set of behaviors, can either reinforce (make stronger), punish (eliminate temporarily), or help extinguish (aid in forgetting) that behavior,” according to her November 2008 article in AOPA’s Flight Training magazine.

“The best time to learn may be in the few moments right after a flight, in an organized and controlled manner,” she wrote. “Actions completed by self, rather than by other, are more meaningful and memorable; memory traces are more indelibly etched; and content is more internalized. We become responsible for what we do…[and] we take more responsibility for our actions.”

Dr. Lapp suggests we commit our debriefings to writing, building a journal of our growing experience. “If we don’t measure it,” she writes, “we can’t change it.” Lapp also says her personal research suggests that a written review makes pilots open up to the process and give self-debriefing the attention it deserves. The “central purpose [of a written review] is to increase self-correction, reflection, and tracking of attitude and behaviors. The goal is to create pilots who reflect on emerging issues immediately after every flight. The students make the entries, specify what they did well and what they could have done better, what they will work on next time, and what knowledge gaps were discovered. These are accompanied by a self-rating system that creates its own system of improvement.”

Dr. Lapp makes her suggested debriefing form available to the public, and invites pilots to adopt it and customize it to their needs. It allows the pilot to identify the major areas of critique, and to answer a few broad questions that identify the overall tenor of the flight. Although Dr. Lapp’s research focused on students receiving instruction (which was, after all, when she was present to introduce the concept of the post-flight debrief and judge the results), she notes in the Flight Training article she created the form originally to reinforce her own need for post-flight debriefings as a certificated and active pilot, and has told me several times her intent is for pilots to use the form as a self-debriefing tool.

Some pilots have suggested reluctance to create a written record of the mistakes they’ve made while flying an airplane. They seem to fear the journal could “fall into the wrong hands” and be used in some way against them in an FAA enforcement action or a liability lawsuit. Sad to say, they may be right. If you choose not to maintain a written record, but you find the act of writing about and scoring your flights indeed does focus your attention on continual improvement, there’s nothing to prevent you from critiquing your performance in writing and then destroying the record when you’re done with it.

If you want to develop an even more detailed type of self-debriefing, you might do what I do as a result of my military experience. Back in the Bad Old Days of the Cold War, I served as a Minuteman nuclear missile launch control officer for the U.S. Air Force. The pressure-cooker environment of potential total nuclear war, 60 feet under the Missouri plains, strangely did much to prepare me for the single-pilot cockpit of an airplane. One thing the “missile business” did for me as a pilot was to teach the debriefing concept of minor, major and critical errors.

Air Force missileers train and are evaluated relentlessly. At least once a month we spent four hours in “the box”—a functional simulator reproducing the hardware and operation of a missile launch control center. No less than once a year we were evaluated in the box (I personally had eight “annual” checks during a four-year tour of duty—go figure). We also were evaluated “in the field”—observed while on actual alert—much like a line check for an airline pilot.

Every evaluation assumed from the beginning that the missile combat crew’s performance was perfect —earning 5.0 points on a five-point scale. Of course, from there, things can go only one direction: downhill. Certain functions, if performed incorrectly, were considered minor errors. These were items that were missed or performed incorrectly, but which did not directly impact the primary mission. Commit a minor error, and you’d have one-tenth of a point lopped off your beginning, perfect score.

A major error might delay getting a missile repaired correctly, allow unauthorized access to a missile site (but no direct access to controls, boosters or warheads), or cause (by action or inaction) one component of the hardware to become inoperative. A major error cost one full point off your final score. In some cases it was possible to recover from a minor or even some major errors, and not be charged the adverse points…if you caught the error in time, and undid what you had done.

A critical error in missiledom cost five points, an automatic failure of the evaluation. Examples of “crits” included attempting to launch missiles when not ordered, launching at a valid order but at the wrong time, or launching to the wrong targets, all of which are highly undesirable events (this was, of course, all in “the box”). In the field, critical error might be tuning a radio or satellite receiver incorrectly (meaning you would not receive emergency messages). Another critical error was to shut down your launch capsule when not called for, thereby degrading your squadron’s ability to launch missiles (usually, when dealing with a simulated fire in your tiny underground command center).

Error points were additive. A major error and two minor errors resulted in a 3.8 score, etc. A crew was deemed qualified if its final score was 2.5 or higher. Crewmembers were awarded highly qualified (HQ) status for a 4.6 or better score (no more than four minor errors, and none of the major ones). You could “crit out” on a combination of major and minor errors. And sometimes an action that would ordinarily only be a minor error (such as setting a clock or tuning a radio) might become “major” if that act led to missing some other task, or it might even be critical if it adversely affected alert status or a simulated launch later on. Great woe fell upon the combat crew that “critted out” and had to go through the entire crew certification procedure to regain their mission-ready status.

What’s this got to do with flying airplanes? Since we’re not talking nuclear Armageddon here, most pilots who “crit out” (i.e., have an accident) do so by letting minor and major errors snowball. Here’s an example from several years ago: I was flying a Beechcraft Bonanza from Wichita to Tullahoma, Tenn. This was my first long trip in the rented Beech, and I was still getting the hang of its Garmin GX60 IFR-qualified GPS. Somewhere over southwestern Missouri, I was assigned a vector around a newly hot MOA, and was told to expect direct to the Walnut Ridge VOR and then the rest of my route as filed. I made the heading change and began fiddling with the GPS.

Still not fully proficient with the interface, I put the Bonanza on autopilot while I loaded the new waypoints. Satisfied, I activated the flight plan…and watched as the Bo’ turned directly toward Walnut Ridge, about five degrees to my left. Minor error! I realized my mistake and returned to my assigned heading. I never penetrated the MOA, and ATC never said a word about it. I was now flying on a “4.9” score. I made a quick note to include the event after I landed, when I’d have time to learn from it. If I’d have accidentally penetrated the MOA, or if ATC had needed to divert traffic to avoid me as a result, it would have been a “major” offense. And if I’d hit something because of my originally “minor” transgression, well….

Some examples of minor errors: missing a radio call; failure to tune backup navcoms; improper setting of altitude alerters; misprogramming or failing to confirm the autopilot’s operating modes; one dot from center on course guidance or glidepath at the missed approach point; etc. A few examples of major errors: Missing a handoff; flying a destabilized approach; deviation from your fuel management schedule; more than 100 feet off altitude; etc. In addition to actual crashes, critical errors include: busting minimums; deviations from an instrument procedure, cleared route or altitude that would result in failure of the IFR Practical Test; failing to brief for the missed approach; failure to follow an obstacle departure procedure; etc. You could list possibilities all day long. It’s easier and more effective to quickly note the transgressions in flight, then rank errors against the minor/major/critical scale after you land.

The trick of flying is to minimize the minor errors and avoid the major offenses, and thereby not “crit out,” or have an accident. We will make mistakes. It’s almost always possible to recover from a minor error in the plane and keep your score in the HQ range. Even if you “pull a major,” as we said in the Air Force, you can fly the rest of the trip in perfect safety if you monitor your position, use your checklists and watch your performance. Put the emotion of making a mistake behind you, and fly the rest of the trip to HQ standards. After you land, review your in-flight notes and score yourself—to become a highly qualified pilot.

Whether you answer a few brief questions or complete a detailed, point-by-point review—in your head, aloud with a fellow pilot or in writing—to fully benefit from the experience of every flight it’s extremely helpful to do a post-flight debriefing. The sooner after you land the better, because more information will be fresh in your head.

Most of us shut down, get out of the airplane, and get on with our busy lives—likely the reason we flew in the first place. Taking a few moments, however, to review the lessons of every flight will help prepare you for the next ones.

Jun 24, 2019

Craig O'Mara didn't start out intending to be a pilot. He was a bird-watcher, and became more interested in flight as he watched the birds, and started flying as a teenager. He soloed as a 16-year old, and received his Private Pilot certificate on his 17th birthday.

In 1979 he joined the Air Force Reserves as a C-9 pilot, flying air ambulance missions all over the United States, as well as overseas. He flew the C-9 for a total of 20 years.

In 1985 he was hired by United Airlines, and served on the DC-10, B737, B757/767, B747 and B787. He was a Line Check Airman on many of these aircraft.

In addition to his United flying, Craig flew as a pilot for NASA in the B747SP. He also flew a variety of warbirds.

Jun 20, 2019

Your preflight briefing will depend on what type of flight you are planning - a training flight briefing will be quite different than an airline brief. But there are some factors that will be common to all flights:

Mission Objective

Weather

NOTAMS

Aircraft Performance

Aircraft Maintenance Status

Route of Flight

Fuel

Takeoff Briefing (PF)

Departure/Arrival Airports

Rejected Takeoff

Automation

Crew Member Duties/Expectations

Arrival/Approach/Missed Approach

Risks

Training Objective/Elements

Jun 17, 2019

Special thanks to Shreenand Sadhale for suggesting this episode!

Cliff Notes version of my career:

Air Force Academy

Undergraduate Pilot Training

O-2A Forward Air Controller, Danang, Vietnam

B-52 copilot, Mather Air Force Base

F-4 Aircraft Commander, Ubon Royal Thai Air Force Base

F-4 Aircraft Commander, Kadena Air Base, Okinawa

T-39 Aircraft Commander/Instructor Pilot, Kadeena Air Base, Okinawa

O-2A Instructor Pilot, Patrick Air Force Base, Florida

B727 Flight Operations Instructor/Flight Engineer, Unites Airlines

O-2A Instructor Pilot, Patrick Air Force Base, Florida

T-39/C-21 Instructor Pilot/Evaluator, Yokota Air Base, Japan

B737 First Officer/Training Check Airman, United Airlines

B737/B727 Captain, United Airlines

B727 /B777 Standards Captain, United Airlines

Adjunct Professor, Metropolitan State College of Denver/Embry-Riddle Aeronautical University

C680 Flight Instructor/Evaluator, FlightSafety International

B777 Senior Commander, Jet Airways, India

IOSA Audit Team Leader

B787 Instructor Pilot, Boeing

B777 Instructor Pilot, Omni Air International

Lecturer, Metropolitan State University of Denver

Fleet Technical Instructor, United Airlines

Jun 13, 2019

FAR 91.25 refers to the NASA Aviation Safety Reporting Program, and Advisory Circular AC 00-46E Explains the program. AOPA has an excellent article about the program.

The Aviation Safety Reporting System, or ASRS, is the US Federal Aviation Administration's (FAA) voluntary confidential reporting system that allows pilots and other aircraft crew members to confidentially report near misses and close calls in the interest of improving air safety. The ASRS collects, analyzes, and responds to voluntarily submitted aviation safety incident reports in order to lessen the likelihood of aviation accidents. The confidential and independent nature of the ASRS is key to its success, since reporters do not have to worry about any possible negative consequences of coming forward with safety problems. The ASRS is run by NASA, a neutral party, since it has no power in enforcement. The success of the system serves as a positive example that is often used as a model by other industries seeking to make improvements in safety.

A notable feature of the ASRS is its confidentiality and immunity policy. Reporters may, but are not required to, submit their name and contact information. If the ASRS staff has questions regarding a report, it can perform a callback and request further information or clarification from the reporter. Once the staff is satisfied with the information received, the report is stripped of identifying information and assigned a report number. The part of the reporting form with contact information is detached and returned to the reporter. ASRS will issue alerts to relevant parties, such as airlines, air traffic controllers, manufacturers or airport authorities, if it feels it is necessary to improve safety. The ASRS also publishes a monthly newsletter highlighting safety issues, and now has an online database of reports that is accessible by the public.

Often, reports are submitted because a rule was accidentally broken. The FAA's immunity policy encourages submission of all safety incidents and observations, especially information that could prevent a major accident. If enforcement action is taken by the FAA against an accidental rule violation that did not result in an accident, a reporter can present their ASRS form as proof that the incident was reported. The FAA views the report as evidence of a "constructive safety attitude" and will not impose a penalty.Immunity can be exercised once every five years, though an unlimited number of reports can be filed.

Due to the self-selected nature of the reports to the ASRS, NASA cautions against statistical use of the data they contain. On the other hand, they do express considerable confidence in the reliability of the reports submitted:

"However, the ASRS can say with certainty that its database provides definitive lower-bound estimates of the frequencies at which various types of aviation safety events actually occur. For example, 34,404 altitude overshoots were reported to the ASRS from January 1988 through December 1994. It can be confidently concluded that at least this number of overshoots occurred during the 1988-94 period--and probably many more. Often, such lower-bound estimates are all that decision makers need to determine that a problem exists and requires attention."[3]

Speaking before a Flight Safety Foundation International Air Safety Seminar in Madrid in November 1966, Bobbie R. Allen, the Director of the Bureau of Safety of the U.S. Civil Aeronautics Board, referred to the vast body of accumulated aviation safety incident information as a "sleeping giant." Noting that fear of legal liability and of regulatory or disciplinary action had prevented the dissemination of this information, rendering it valueless to those who might use it to combat hazards in the aviation system, Mr. Allen commented:

“In the event that the fear of exposure cannot be overcome by other means, it might be profitable if we explored a system of incident reporting which would assure a substantial flow of vital information to the computer for processing, and at the same time, would provide some method designed to effectively eliminate the personal aspect of the individual occurrences so that the information derived would be helpful to all and harmful to none.”

Several years earlier, in testimony before the U.S. Senate on the legislation proposing the Federal Aviation Act of 1958, the late William A. Patterson, then President of United Airlines, touched on the need to develop accurate safety trend information. "On the positive side," said Mr. Patterson, "you take your statistics - and your records - and your exposures - and you act before the happening!“

These distinguished aviation figures were articulating an objective long-recognized, but which had frustrated all efforts at accomplishment. In the years to come, frequent references to the need for information collection and dissemination would recur.

Enforcement Restrictions. The FAA considers the filing of a report with NASA concerning an incident or occurrence involving a violation of 49 U.S.C. subtitle VII or the 14 CFR to be indicative of a constructive attitude. Such an attitude will tend to prevent future violations. Accordingly, although a finding of violation may be made, neither a civil penalty nor certificate suspension will be imposed if:

  1. The violation was inadvertent and not deliberate;
  2. The violation did not involve a criminal offense, accident, or action under 49 U.S.C. §44709, which discloses a lack of qualification or competency, which is wholly excluded from this policy;
  3. The person has not been found in any prior FAA enforcement action to have committed a violation of 49 U.S.C. subtitle VII, or an regulation promulgated there for a period of 5 years prior to the date of occurrence; and
  4. The person proves that, within 10 days after the violation, or date when the person became aware or should have been aware of the violation, he or she completed and delivered or mailed a written report of the incident or occurrence to NASA.
Jun 10, 2019

Keith Reeves wanted to be a pilot ever since he was a child, living on base at Kadena Air Base, Japan, and hearing the local F-4s and SR-71s taking off.

When the family relocated to Selfridge Air Force Base he got the chance to get close to airplanes. A friend on base took him up for a flight in a General Aviation plane, and he was hooked.

He attended the United States Air Force Academy, and flew with the Academy aero club. Before Undergraduate Pilot Training, he served as an engineer at Wright-Patterson Air Force Base, then he attended pilot training at Laughlin Air Force Base. Kevin qualified for the T-38 track, then flew B-52's for 5 1/2 years, rising to the position of Instructor Pilot.

While flying B-52s, he bought a Citabria, and kept it for 10 years.

He applied to the B-2 program, and was accepted on his third attempt. He remained on the B-2 for the remainder of his flying career, stationed at Whiteman Air Force Base. In addition to the B-2, Keith was dual-qualified in the T-38.

During Operation Iraqi Freedom, he flew a 37-hour flight.

Keith now flies as a B737 first officer for a major legacy airline.

Jun 6, 2019

Operation Overlord was the codename for the Battle of Normandy, the Allied operation that launched the successful invasion of German-occupied Western Europe during World War II. The operation was launched on 6 June 1944 with the Normandy landings (Operation Neptune, commonly known as D-Day). A 1,200-plane airborne assault preceded an amphibious assault involving more than 5,000 vessels. Nearly 160,000 troops crossed the English Channel on 6 June, and more than two million Allied troops were in France by the end of August.

The decision to undertake a cross-channel invasion in 1944 was taken at the Trident Conference in Washington in May 1943. General Dwight D. Eisenhower was appointed commander of Supreme Headquarters Allied Expeditionary Force (SHAEF), and General Bernard Montgomery was named as commander of the 21st Army Group, which comprised all the land forces involved in the invasion. The coast of Normandy of northwestern France was chosen as the site of the invasion, with the Americans assigned to land at sectors codenamed Utah and Omaha, the British at Sword and Gold, and the Canadians at Juno. To meet the conditions expected on the Normandy beachhead, special technology was developed, including two artificial ports called Mulberry harbors and an array of specialized tanks nicknamed Hobart's Funnies. In the months leading up to the invasion, the Allies conducted a substantial military deception, Operation Bodyguard, using both electronic and visual misinformation. This misled the Germans as to the date and location of the main Allied landings. Führer Adolf Hitler placed German Field Marshal Erwin Rommel in charge of developing fortifications all along Hitler's proclaimed Atlantic Wall in anticipation of an invasion.

The Allies failed to accomplish their objectives for the first day, but gained a tenuous foothold that they gradually expanded when they captured the port at Cherbourg on 26 June and the city of Caen on 21 July. A failed counterattack by German forces on 8 August left 50,000 soldiers of the 7th Army trapped in the Falaise pocket. The Allies launched a second invasion from the Mediterranean Sea of southern France (code-named Operation Dragoon) on 15 August, and the Liberation of Paris followed on 25 August. German forces retreated east across the Seine on 30 August 1944, marking the close of Operation Overlord.

Invasion stripes were alternating black and white bands painted on the fuselages and wings of Allied aircraft during World War II to reduce the chance that they would be attacked by friendly forces during and after the Normandy Landings. Three white and two black bands were wrapped around the rear of a fuselage just in front of the empennage (tail) and from front to back around the upper and lower wing surfaces.

After a study concluded that the thousands of aircraft involved in the invasion would saturate and break down the IFF system, the marking scheme was approved on May 17, 1944, by Air Chief Marshal Sir Trafford Leigh-Mallory, commanding the Allied Expeditionary Air Force. A small-scale test exercise was flown over the OVERLORD invasion fleet on June 1, to familiarize the ships' crews with the markings, but for security reasons, orders to paint the stripes were not issued to the troop carrier units until June 3 and to the fighter and bomber units until June 4.

Stripes were applied to fighters, photo-reconnaissance aircraft, troop carriers, twin-engined medium and light bombers, and some special duty aircraft, but were not painted on four-engined heavy bombers of the U.S. Eighth Air Force or RAF Bomber Command, as there was little chance of mistaken identity — few such bombers existed in the Luftwaffe and were already quite familiar to the Allies. The order affected all aircraft of the Allied Expeditionary Air Force, the Air Defense of Great Britain, gliders, and support aircraft such as Coastal Command air-sea rescue aircraft whose duties might entail their overflying Allied anti-aircraft defenses.

One month after D-Day, the stripes were ordered removed from planes' upper surfaces to make them more difficult to spot on the ground at forward bases in France. They were completely removed by the end of 1944 after achieving total air supremacy over France.

The stripes were five alternating black and white stripes. On single-engine aircraft each stripe was to be 18 inches (46 cm) wide, placed 6 inches (15 cm) inboard of the roundels on the wings and 18 inches (46 cm) forward of the leading edge of the tailplane on the fuselage. National markings and serial number were not to be obliterated. On twin-engine aircraft the stripes were 24 inches (61 cm) wide, placed 24 inches (61 cm) outboard of the engine nacelles on the wings, and 18 inches (46 cm) forward of the leading edge of the tailplane around the fuselage. American aircraft using the invasion stripes very commonly had some part of the added "bar" section of their post-1942 roundels overlapping the invasion strips on the wings, however.

In most cases the stripes were painted on by the ground crews; with only a few hours' notice, few of the stripes were "masked". As a result, depending on the abilities of the "erks" (RAF nickname for ground crew), the stripes were often far from neat and tidy.

Plans for the invasion of Normandy went through several preliminary phases throughout 1943, during which the Combined Chiefs of Staff (CCS) allocated 13½ U.S. troop carrier groups to an undefined airborne assault. The actual size, objectives, and details of the plan were not drawn up until after General Dwight D. Eisenhower became Supreme Allied Commander in January 1944. In mid-February Eisenhower received word from Headquarters U.S. Army Air Forces that the TO&E of the C-47 Skytraingroups would be increased from 52 to 64 aircraft (plus nine spares) by April 1 to meet his requirements. At the same time the commander of the U.S. First Army, Lieutenant General Omar Bradley, won approval of a plan to land two airborne divisions on the Cotentin Peninsula, one to seize the beach causeways and block the eastern half at Carentan from German reinforcements, the other to block the western corridor at La Haye-du-Puits in a second lift. The exposed and perilous nature of the La Haye de Puits mission was assigned to the veteran 82nd Airborne Division ("The All-Americans"), commanded by Major General Matthew Ridgway, while the causeway mission was given to the untested 101st Airborne Division ("The Screaming Eagles"), which received a new commander in March, Brigadier General Maxwell D. Taylor, formerly the commander of the 82nd Airborne Division Artillery who had also been temporary assistant division commander (ADC) of the 82nd Airborne Division, replacing Major General William C. Lee, who suffered a heart attack and returned to the United States.

Bradley insisted that 75 per cent of the airborne assault be delivered by gliders for concentration of forces. Because it would be unsupported by naval and corps artillery, Ridgway, commanding the 82nd Airborne Division, also wanted a glider assault to deliver his organic artillery. The use of gliders was planned until April 18, when tests under realistic conditions resulted in excessive accidents and destruction of many gliders. On April 28 the plan was changed; the entire assault force would be inserted by parachute drop at night in one lift, with gliders providing reinforcement during the day.

Jun 3, 2019

Angel Smith started out in the Marines as an enlisted aviation radio repairman and then separated to go to college. Once out, she encountered a Marine recruiter who was trying to sign up women pilots, so she took the flight test and was hooked.

After she received her undergraduate degree (she now has a masters degree and is now finishing up her doctorate) she attended Marine Officer School, then went to pilot training at Pensacola for her first flight at the controls of an airplane.

She went through flight school as a single parent of two young children, and got her first choice of aircraft - the C-130 Hercules. In the C-130, she was stationed at Futenma Air Station in Okinawa. One of her first missions was refueling Navy fighters.

After the flying assignment, Angel served as the aide to three different generals in three years. She became the speechwriter for the Commandant of the Marine Corps.

After that, she returned to flying in the C-130 at Miramar. Angel served for a total of 23 years.

1