Info

Ready For Takeoff - Turn Your Aviation Passion Into A Career

The Ready For Takeoff podcast will help you transform your aviation passion into an aviation career. Every week we bring you instruction and interviews with top aviators in their field who reveal their flight path to an exciting career in the skies.
RSS Feed
Ready For Takeoff - Turn Your Aviation Passion Into A Career
2020
November
October
September
August
July
June
May
April
March
February
January


2019
December
November
October
September
August
July
June
May
April
March
February
January


2018
December
November
October
September
August
July
June
May
April
March
February
January


2017
December
November
October
September
August
July
June
May
April
March
February
January


2016
December
November
October
September
August
July
June
May
April
March
February
January


2015
December


Categories

All Episodes
Archives
Categories
Now displaying: Category: general
Nov 23, 2020

After flying planes around the world together for years, married couple Joe and Margrit Fahan co-piloted their last flight on August 13.

The Fahans have both been pilots for more than 30 years and have been co-pilots on a Delta Airbus A330-300 aircraft for the past six years.

The couple met while they were flying for the same commuter airline in New Jersey in the early 1980s. At the time, both Joe and Margrit were married to other spouses. Years later, when they were both single, they ran into each other again.

The Fahans got married in 1992 and had two sons, both of whom went on to become pilots.

The pilot couple met in the early '80s. 

When the coronavirus pandemic impacted travel in the US earlier in the year, their once-busy flight schedule was almost entirely grounded. They flew just a handful of flights after mid-March.

"When COVID hit, everything shut down. It just really came to a screeching halt, especially international travel," Joe told Insider.

In July, the couple accepted an offer made by Delta Air Lines to retire early due to the lack of flights. Joe, 63, was nearing the required commercial airline pilot retirement age of 65, but Margrit, 60, still had a few years left in the career.

"I still might do something else. I am enjoying a little bit of time off here and there, but I'm looking for other opportunities," Margrit said.

The Fahans can look back on many years of co-piloting memories and stories. 

The couple started their @flyingfahans Instagram account a few years ago to document their experience as married pilots. They recently posted a video marking their retirement.

 

In the video, the couple documented the experience of receiving a water salute, an aviation tradition to honor airline service in which fire hoses spray arcs of water over the plane.

Some people have asked the Fahans how they managed to work together as a married couple.

"We do get some people saying, 'I could never work with my spouse,'" Joe said. "My usual answer to them is: 'One day you're gonna be retired, and you'll have to get along with them then.'"

The couple is enjoying retirement but said they are open to future opportunities in aviation.

Mar 5, 2020

The B737 has an interesting stabilizer trim system, which operates at four different speeds.

 

Main Electric Trim

   Flaps Up: .2 units per second

   Flaps Down: .4 units per second

   Autopilot Trim

   Flaps Up: .09 units per second

   Flaps Down: .27 units per second

 

On the -300 and later models, there is a system called Speed Trim, which provides trim inputs during low speed operations with low gross weight, and aft center of gravity. It is most frequently observed during takeoffs and go-arounds. Conditions for the system to operate are:

 

  Airspeed 100-300 KIAS

 

10 seconds after liftoff

 

  5 seconds following release of trim switches

 

  N1 above 60%

 

  Autopilot not on

 

  Sensing of trim requirement

Jan 20, 2020

Laser attacks against aircraft are a major problem. There were over 7000 laser strikes against aircraft in the past year. Increasing the threat is the easy availability of hand-held lasers and the increased power of modern lasers.

Laser strikes have the potential to distract and blind pilots, and a solution is essential to aviation safety.

Dr. George Palikaras is a scientist who saw the need to protect pilots' eyes from laser illumination. His company, Metameterial Technologies, has developed a solution, and protection is available now.

Sep 19, 2019

In RFT 086 we discussed Stabilized Approaches. According to AINOnline fully 96 percent of all airline flights conclude with stabilized approaches. Of the 4 percent that are not stabilized, virtually NONE of them (3%) result in a go-around!

FAA recommends</a> that approach stabilization start as far out as possible. Simply stated, a stable approach is a 3-degree glide path, executed on-speed and fully configured for landing. It's easy to calculate a 3-degree glide path - simply take half your groundspeed and multiply it by 10 to get the vertical speed to maintain the 3 degrees.

Since the go-around is not performed nearly as often as a normal landing, it is essential that the crew review the procedures involved in a go-around when they brief the approach.

Apr 26, 2019

In this age of flight directors, flight management computers and autopilots, it's easy to get into the mode of letting the automation do all the work. And that's good if it enhances safety.

But it's really important to keep your basic stick-and-rudder skills current, and that includes flying an ILS approach without any of the bells and whistles.

So let's discuss a hand-flown ILS flown WITHOUT a flight director or autopilot.

The key to successfully, easily flying a manual ILS is preparation. First, study the approach chart, so you have a complete understanding of all the facilities involved. Take a look at the distance from the glide slope intercept point and the outer marker (if it's part of the approach) to the runway. Examine the glide slope angle, and note if it is OTHER than the standard 3-degrees.

Now, as close to your ETE as possible, get the destination weather. Ideally, this will be right before you prepare for your approach. Now, take out your E6B computer and calculate your groundspeed and wind correction for the approach. If you can't remember how to do this, listen to episode RFT 146 and PRACTICE with your E6B until you can solve a wind problem in under 30 seconds. The only thing that makes this calculation different from what you do with the E6B for your cross-country planning planning is that you will be using only MAGNETIC winds (from ATIS), rather than winds oriented to true north.

When entering your true airspeed into your E6B, you need to know your true airspeed (TAS), based on your indicated airspeed (IAS). You can use the calculator side of your E6B to determine TAS (RFT 148), but, as a guide, TAS increases 2 percent for every 1000 feet above sea level. So, if you are flying your approach at 120 KIAS at an average elevation of 6000 feet MSL, your TAS is [120 + 120(.02X6)] = 120 + 14 = 134. THAT's the number you use for TAS in your E6B.

Once you have calculated your GS and WCA, calculate your descent rate and heading to keep yourself on the localizer and glide slope. Now that you have your groundspeed, you can calculate your 3-degree descent rate by multiplying HALF your groundspeed times 10. In the example above, our descent rate will be 670 feet per minute (FPM).

All of this, of course is simply a guide to get you into the ballpark for an easy, stabilized approach. But if you start out with these values, you will only need minimal corrections to keep your LOC and GS centered.

The only thing left to do when you get to approach minimums and visually acquire the runway is DON'T CHANGE ANYTHING. If you have a crosswind, the runway will not be DIRECTLY in front of you, it will be offset by your WCA.

1